
Package ‘MsExperiment’
May 20, 2024

Title Infrastructure for Mass Spectrometry Experiments

Version 1.6.0

Description Infrastructure to store and manage all aspects related to
a complete proteomics or metabolomics mass spectrometry (MS)
experiment. The MsExperiment package provides light-weight and
flexible containers for MS experiments building on the new MS
infrastructure provided by the Spectra, QFeatures and related
packages. Along with raw data representations, links to original
data files and sample annotations, additional metadata or
annotations can also be stored within the MsExperiment
container. To guarantee maximum flexibility only minimal
constraints are put on the type and content of the data within the
containers.

Depends R (>= 4.2), ProtGenerics (>= 1.35.2),

Imports methods, S4Vectors, IRanges, Spectra, SummarizedExperiment,
QFeatures, DBI, BiocGenerics

Suggests testthat, knitr (>= 1.1.0), roxygen2, BiocStyle (>= 2.5.19),
rmarkdown, rpx, mzR, msdata, MsBackendSql (>= 1.3.2), RSQLite

License Artistic-2.0

LazyData no

VignetteBuilder knitr

BugReports https://github.com/RforMassSpectrometry/MsExperiment/issues

URL https://github.com/RforMassSpectrometry/MsExperiment

biocViews Infrastructure, Proteomics, MassSpectrometry, Metabolomics,
ExperimentalDesign, DataImport

RoxygenNote 7.3.1

Roxygen list(markdown=TRUE)

Encoding UTF-8

Collate 'MsExperiment-db.R' 'MsExperiment-functions.R'
'MsExperimentFiles.R' 'MsExperiment.R'
'existMsExperimentFiles.R'

1

https://github.com/RforMassSpectrometry/MsExperiment/issues
https://github.com/RforMassSpectrometry/MsExperiment

2 dbWriteSampleData

git_url https://git.bioconductor.org/packages/MsExperiment

git_branch RELEASE_3_19

git_last_commit ee7acbf

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-19

Author Laurent Gatto [aut, cre] (<https://orcid.org/0000-0002-1520-2268>),
Johannes Rainer [aut] (<https://orcid.org/0000-0002-6977-7147>),
Sebastian Gibb [aut] (<https://orcid.org/0000-0001-7406-4443>)

Maintainer Laurent Gatto <laurent.gatto@uclouvain.be>

Contents
dbWriteSampleData . 2
experimentFiles . 4
MsExperimentFiles . 11
readMsExperiment . 12

Index 14

dbWriteSampleData Write sample annotations to a MsBackendSql SQL database

Description

For MsExperiment objects with their MS data represented by a Spectra object that use a MsBackendSql
backend, its sample annotations can be written to the backend’s SQL database with the dbWriteSampleData()
function. The content of the object’s [sampleData()] (as well as eventually present linking be-
tween samples and spectra) will be stored in two separate database tables sample_data and sam-
ple_to_msms_spectrum in the same database.

This requires that the MS data of the experiment is represented by a MsBackendSql backend (see
help on the createMsBackendSqlDatabase or the MsBackendSql package vignette for more infor-
mation on how to create or use such SQL databases).

Usage

dbWriteSampleData(x)

Arguments

x MsExperiment from which sample annotations should be written to the database.

Author(s)

Johannes Rainer, Laurent Gatto

https://orcid.org/0000-0002-1520-2268
https://orcid.org/0000-0002-6977-7147
https://orcid.org/0000-0001-7406-4443

dbWriteSampleData 3

Examples

library(MsExperiment)

Create a MsBackendSql database from two mzML files.
Connect first to an empty SQLite database (for the example we create
a database in a temporary file).
library(RSQLite)
sqlite_db <- tempfile()
con <- dbConnect(SQLite(), sqlite_db)

Define the files from which we import the data
fls <- dir(system.file("sciex", package = "msdata"), pattern = "mzML",

full.names = TRUE)

Create a MsBackendSql database containing the full MS data
library(MsBackendSql)
createMsBackendSqlDatabase(con, fls)

Note: alternatively it would be possible to first import the MS data
to a `Spectra` object and then change the backend to a `MsBackendSql`
using the `setBackend` function.

Load this data as a `Spectra` object (using a `MsBackendOfflineSql`
backend)
library(Spectra)
sps <- Spectra(sqlite_db, source = MsBackendOfflineSql(),

drv = SQLite())
sps

Define sample annotations for the two data files. Adding one column
`"file"` that contains the file name of the data files.
df <- data.frame(sample = c("QC1", "QC2"), file = basename(fls))

Add a spectra variable `"file"` to the `Spectra` object with
the raw data files' file names to simplify the linking between
samples and spectra performed later.
sps$file <- basename(dataOrigin(sps))

Create a MsExperiment with the spectra and sample data.
mse <- MsExperiment(spectra = sps, sampleData = df)

Establish the link (mapping) between samples and spectra
using the column `"file"` in the `sampleData` and the spectra
variable `"file"`.
mse <- linkSampleData(mse, with = "sampleData.file = spectra.file")
mse

Write sample data (and the sample to spectra mapping) to the
MsBackendSql database.
dbWriteSampleData(mse)

List the tables in the database

4 experimentFiles

dbListTables(con)

Sample data was thus stored to the database.
dbGetQuery(con, "select * from sample_data;")

experimentFiles Managing Mass Spectrometry Experiments

Description

The MsExperiment class allows the storage and management of all aspects related to a complete
proteomics or metabolomics mass spectrometry experiment. This includes experimantal design
(i.e. a table with samples), raw mass spectromtry data as spectra and chromatograms, quantitative
features, and identification data or any other relevant data files.

For details, see https://rformassspectrometry.github.io/MsExperiment

This package is part of the RforMassSpectrometry initiative: https://www.rformassspectrometry.org/

Usage

experimentFiles(object)

experimentFiles(object) <- value

sampleData(object)

sampleData(object) <- value

qdata(object)

qdata(object) <- value

spectraSampleIndex(x, duplicates = c("first", "keep"))

MsExperiment(
experimentFiles = MsExperimentFiles(),
otherData = List(),
qdata = NULL,
sampleData = DataFrame(),
spectra = NULL

)

S4 method for signature 'MsExperiment'
show(object)

S4 method for signature 'MsExperiment'
length(x)

experimentFiles 5

S4 method for signature 'MsExperiment'
spectra(object)

S4 replacement method for signature 'MsExperiment'
spectra(object) <- value

otherData(object)

otherData(object) <- value

linkSampleData(
object,
with = character(),
sampleIndex = seq_len(nrow(sampleData(object))),
withIndex = integer(),
subsetBy = 1L

)

S4 method for signature 'MsExperiment,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'MsExperiment,function'
filterSpectra(object, filter, ...)

Arguments

object An instance of class MsExperiment.

value An object of the appropriate class for the slot to be populated.

x an MsExperiment.
experimentFiles

MsExperimentFiles() defining (external) files to data or annotation.

otherData List with arbitrary additional (other) information or data.

qdata QFeatures or SummarizedExperiment with the quantification data.

sampleData DataFrame (or data.frame) with information on individual samples of the ex-
periment.

spectra Spectra() object with the MS spectra data of the experiment.

with for linkSampleData(): character(1) defining the data to which samples
should be linked. See section Linking sample data to other experimental data
for details.

sampleIndex for linkSampleData(): integer with the indices of the samples in sampleData(object)
that should be linked.

withIndex for linkSampleData(): integer with the indices of the elements in with to
which the samples (specified by sampleIndex) should be linked to.

subsetBy for linkSampleData(): optional integer(1) defining the dimension on which
the subsetting will occurr on the linked data. Defaults to subsetBy = 1L thus
subsetting will happen on the first dimension (rows or elements).

6 experimentFiles

i for [: an integer, character or logical referring to the indices or names
(rowname of sampleData) of the samples to subset.

j for [: not supported.

... optional additional parameters. For filterSpectra(): parameters to be passed
to the filter function (parameter filter).

drop for [: ignored.

filter for filterSpectra(): any filter function supported by Spectra() to filter the
spectra object (such as filterRt or filterMsLevel). Parameters for the filter
function can be passed through

Value

See help of the individual functions.

Slots

experimentFiles An instance of class MsExperimentFiles or NULL.

spectra An instance of class Spectra or NULL.

qdata An instance of class QFeatures, SummarizedExperiment or NULL.

otherData A List to store any additional data objects.

sampleData A DataFrame documenting the experimental design.

sampleDataLinks A List with link definitions between samples and data elements. Should not
be directly accessed or modified by the user.

metadata A list to store additional metadata.

General information

An experiment is typically composed of several items

• Description and information (covariates etc) of each sample from the experiment. These are
stored in the sampleData slot as a DataFrame, each row describing a sample with columns
containing all relevant information on that sample.

• Files to data or annotations. These are stored in the @experimentFiles slot as an instance of
class MsExperimentFiles.

• General metadata about the experiment, stored as a list in the @metadata slot.

• Mass spectrometry data. Sectra and their metadata are stored as an [Spectra()] object
in the spectra slot. Chromatographic data is not yet supported but will be stored as a
Chromatograms() object in the @chromatorgrams slot.

• Quantification data is stored as QFeatures or SummarizedExperiment objects in the @qdata
slot and can be accessed or replaced with the qdata() or qdata<- functions, respectively.

• Any additional data, be it other spectra data, or proteomics identification data (i.e peptide-
spectrum matches defined as PSM objects) can be added as elements to the list stored in the
otherData slot.

experimentFiles 7

The length of a MsExperiment is defined by the number of samples (i.e. the number of rows of
the object’s sampleData). A MsExperiment with two samples will thus have a length of two,
independently of the number of files or length of raw data in the object. This also defines the
subsetting of the object using the [function which will always subset by samples. See the section
for filtering and subsetting below for more information.

MsExperiment objects can be created using the MsExperiment() function providing the data with
the parameters listed below. If the Spectra() object provided with the spectra param uses a
MsBackendSql backend, sample data could be retrieved from the associated SQL database (see
section Using MsExperiment with MsBackendSql in the vignette for details). Alternatively, it is
also possible to subsequently add data and information to an existing MsExperiment. Finally, with
the readMsExperiment() function it is possible to create a MsExperiment by importing MS spec-
tra data directly from provided data files. See examples below or the package vignette for more
information.

Accessing data

Data from an MsExperiment object can be accessed with the dedicated accessor functions:

• experimentFiles(), experimentFiles<-: gets or sets experiment files.

• length(): get the length of the object which represents the number of samples availble in the
object’s sampleData.

• metadata(), metadata<-: gets or sets the object’s metadata.

• sampleData(), sampleData<-: gets or sets the object’s sample data (i.e. a DataFrame con-
taining sample descriptions).

• spectra(), spectra<-: gets or sets spectra data. spectra() returns a Spectra() object,
spectra<- takes a Spectra data as input and returns the updated MsExperiment.

• spectraSampleIndex(): depending on parameter duplicates it returns either an integer
(duplicates = "first", the default) or a list (duplicates = "keep") of length equal to
the number of spectra within the object with the indices of the sample(s) (in sampleData())
a spectrum is assigned to. With duplicates = "first", an integer with the index is re-
turned for each spectrum. If a spectrum was assigned to more than one sample a warning
is shown and only the first sample index is returned for that spectrum. For duplicates =
"keep", assignments are returned as a list of integer vectors, each element being the in-
dex(es) of the sample(s) a spectrum is assigned to. For spectra that are not linked to any
sample an NA_integer_ is returned as index for duplicates = "first" and an empty integer
(integer()) for duplicates = "keep". Note that the default duplicates = "first" will
work in almost all use cases, as generally, a spectrum will be assigned to a single sample.

• qdata(), qdata<-: gets or sets the quantification data, which can be a QFeatures or SummarizedExperiment.

• otherData() , otherData<-: gets or sets the addition data types, stored as a List in the
object’s otherData slot.

Linking sample data to other experimental data

To start with, an MsExperiment is just a loose collection of files and data related to an experiment,
no explicit links or associactions are present between the samples and related data. Such links
can however be created with the linkSampleData() function. This function can establish links

8 experimentFiles

between individual (or all) samples within the object’s sampleData to individual, or multiple, data
elements or files, such as Spectra or raw data files.

The presence of such links enables a (consistent) subsetting of an MsExperiment by samples. Thus,
once the link is defined, any subsetting by sample will also correctly subset the linked data. All
other, not linked, data elements are always retained as in the original MsExperiment.

To be able to link different elements within an MsExperiment it is also required to identify them
with a consistent naming scheme. The naming scheme of slots and data elements within follows
an SQL-like scheme, in which the variable (element) is identified by the name of the database
table, followed by a "." and the name of the database table column. For MsExperiment, the
naming scheme is defined as "<slot name>.<element name>". A column called "sample_name"
within the sampleData data frame can thus be addressed with "sampleData.sample_name", while
spectra.msLevel would represent the spectra variable called msLevel within the Spectra stored
in the spectra slot.

Links between sample data rows and any other data element are stored as integer matrices within
the @sampleDataLinks slot of the object (see also the vignette for examples and illustrations). The
first column of a matrix is always the index of the sample, and the second column the index of
the element that is linked to that sample, with one row per element. Links can be defined/added
with the linkSampleData() function which adds a relationship between rows in sampleData
to elements in any other data within the MsExperiment that are specified with parameter with.
linkSampleData() supports two different ways to define the link:

• Parameter with defines the data to which the link should be established. To link samples
to raw data files that would for example be available as a character in an element called
"raw_files" within the object’s experimentFiles, with = experimentFiles.raw_files
would have to be used. Next it is required to specify which samples should be linked with
which elements in with. This needs to be defined with the parameters sampleIndex and
withIndex, both are expected to be integer vectors specifying which sample in sampleData
should be linked to which element in with (see examples below or vignette for examples and
details).

• As an alternative way, a link could be defined with an SQL-like syntax that relates a column in
sampleData to a column/element in the data to which the link should be established. To link
for example individual spectra to the corresponding samples with = "sampleData.raw_file
= spectra.dataOrigin" could be used assuming that sampleData contains a column named
"raw_file" with the (full path) of the raw data file for each sample from which the spectra
were imported. In this case both sampleIndex and withIndex can be omitted, but it is ex-
pected/required that the columns/elements from sampleData and the data element to which
the link should be established contain matching values.

Note that linkSampleData will replace a previously existing link to the same data element.

• spectraSampleIndex() is a convenience function that extracts for each spectrum in the ob-
ject’s spectra() the index of the sample it is associated with (see function’s help above for
more information).

Subsetting and filtering

• [: MsExperiment objects can be subset by samples with [i] where i is the index or a logical
defining to which samples the data should be subset. Subsetting by sample will (correctly)
subset all linked data to the respective samples. If multiple samples are linked to the same data

experimentFiles 9

element, subsetting might duplicate that data element. This duplication of n:m relationships
between samples to elements does however not affect data consistency (see examples below
for more information). Not linked data (slots) will be returned as they are. Subsetting in
arbitrary order is supported. See the vignette for details and examples.

• filterSpectra(): subsets the Spectra within an MsExperiment using a provided filter func-
tion (parameter filter). Parameters for the filter function can be passed with parameter
Any of the filter functions of a Spectra() object can be passed with parameter filter. Pos-
sibly present relationships between samples and spectra (links, see also linkSampleData())
are updated. Filtering affects only the spectra data of the object, none of the other slots and
data (e.g. sampleData) are modified. The function returns an MsExperiment with the filtered
Spectra object.

Author(s)

Laurent Gatto, Johannes Rainer

Examples

An empty MsExperiment object
msexp <- MsExperiment()
msexp

example(MsExperimentFiles)
experimentFiles(msexp) <- fls
msexp

Linking samples to data elements

Create a small experiment
library(S4Vectors)
mse <- MsExperiment()
sd <- DataFrame(sample_id = c("QC1", "QC2"),

sample_name = c("QC Pool", "QC Pool"),
injection_idx = c(1, 3))

sampleData(mse) <- sd

define file names containing spectra data for the samples and
add them, along with other arbitrary files to the experiment
fls <- dir(system.file("sciex", package = "msdata"), full.names = TRUE)
experimentFiles(mse) <- MsExperimentFiles(

mzML_files = fls,
annotations = "internal_standards.txt")

Link samples to data files: first sample to first file in "mzML_files",
second sample to second file in "mzML_files"
mse <- linkSampleData(mse, with = "experimentFiles.mzML_files",

sampleIndex = c(1, 2), withIndex = c(1, 2))

Link all samples to the one file in "annotations"
mse <- linkSampleData(mse, with = "experimentFiles.annotations",

sampleIndex = c(1, 2), withIndex = c(1, 1))

10 experimentFiles

mse

Import the spectra data and add it to the experiment
library(Spectra)
spectra(mse) <- Spectra(fls, backend = MsBackendMzR())

Link each spectrum to the respective sample. We use the alternative
link definition that does not require sampleIndex and withIndex but
links elements based on matching values in the specified data elements.
We need to add the full file name as an additional column to sampleData
in order to allow matching this file names with the value in
spectra(mse)$dataOrigin which contains the original file names from which
the spectra were imported.
sampleData(mse)$raw_file <- normalizePath(fls)

The links can be added using the short notation below
mse <- linkSampleData(mse, with = "sampleData.raw_file = spectra.dataOrigin")
mse

With sampleData links present, any subsetting of the experiment by sample
will ensure that all linked elements are subset accordingly
b <- mse[2]
b
sampleData(b)
experimentFiles(b)$mzML_files

The `spectraSampleIndex()` function returns, for each spectrum, the
index in the object's `sampleData` to which it is linked/assigned
spectraSampleIndex(mse)

Subsetting with duplication of n:m sample to data relationships
##
Both samples were assigned above to one "annotation" file in
`experimentFiles`:
experimentFiles(mse[1])[["annotations"]]
experimentFiles(mse[2])[["annotations"]]

Subsetting will always keep the relationship between samples and linked
data elements. Subsetting will however possibly duplicate data elements
that are shared among samples. Thus, while in the original object the
element "annotations" has a single entry, subsetting with [1:2] will
result in an MsExperiment with duplicated entries in "annotations"
experimentFiles(mse)[["annotations"]]
experimentFiles(mse[1:2])[["annotations"]]

Spectra within an MsExperiment can be filtered/subset with the
`filterSpectra` function and any of the filter functions supported
by `Spectra` objects. Below we restrict the spectra data to spectra
with a retention time between 200 and 210 seconds.
res <- filterSpectra(mse, filterRt, rt = c(200, 210))
res

The object contains now much less spectra. The retention times for these

MsExperimentFiles 11

rtime(spectra(res))

Relationship between samples and spectra was preserved by the filtering
a <- res[1L]
spectra(a)

MsExperimentFiles A class to store experiment files

Description

The MsExperimentFiles class stores files that are part of a mass spectrometry experiment. The
objects are created with the MsExperimentFiles() function.

The files encoded in a MsExperimentFiles instance don’t need to exist on the current filesystem -
sometimes, these might be created in anticipation of their creation. The existMsExperimentFiles()
function can be used to verify which ones currently exist: it returns a list of logicals (formally an
instance of IRanges::LogicalList() of lenghts equal to the MsExperimentFiles used as input.

Usage

MsExperimentFiles(..., metadata = list())

S4 method for signature 'MsExperimentFiles'
show(object)

existMsExperimentFiles(object)

Arguments

... Either a named list or a set of named vectors. All elements are coerced to char-
acters.

metadata list() holding arbitrary R objects as annotations.

object The existMsExperimentFiles() function works with either an instance of
MsExperimentFiles or MsExperiment.

Value

MsExperimentFiles returns an instance of MsExperimentFiles.

Author(s)

Laurent Gatto

12 readMsExperiment

Examples

fls <- MsExperimentFiles(mzmls = c("/path/to/f1.mzML", "/path/to/f2.mzML"),
mzids = "/another/path/to/id1.mzid",
fasta = "file.fas")

fls

A new MsExperimentFiles containing mzML or mzid files
fls[1]
fls["mzids"]

The actual file names
fls[[1]]
fls[[2]]
fls[["fasta"]]

None of the files used in this example actually exist
existMsExperimentFiles(fls)

readMsExperiment Import MS spectra data of an experiment

Description

Read/import MS spectra data of an experiment from the respective (raw) data files into an MsExperiment()
object. Files provided with the spectraFiles parameter are imported as a Spectra object and each
file is automatically linked to rows (samples) of a sampleData data frame (if provided).

Usage

readMsExperiment(spectraFiles = character(), sampleData = data.frame(), ...)

Arguments

spectraFiles character with the (absolute) file names of the MS data files that should be
imported as a Spectra() object.

sampleData data.frame or DataFrame with the sample annotations. Each row is expected
to contain annotations for one file (sample). The order of the data frame’s rows is
expected to match the order of the provided files (with parameter spectraFiles).

... additional parameters for the Spectra() call to import the data.

Value

MsExperiment.

Author(s)

Johannes Rainer

readMsExperiment 13

Examples

Define the files of the experiment to import
fls <- c(system.file("microtofq/MM14.mzML", package = "msdata"),

system.file("microtofq/MM8.mzML", package = "msdata"))

Define a data frame with some sample annotations
ann <- data.frame(

injection_index = 1:2,
sample_id = c("MM14", "MM8"))

Import the data
library(MsExperiment)
mse <- readMsExperiment(spectraFiles = fls, ann)
mse

Access the spectra data
spectra(mse)

Access the sample annotations
sampleData(mse)

Import the data reading all MS spectra directly into memory
mse <- readMsExperiment(spectraFiles = fls, ann,

backend = Spectra::MsBackendMemory())
mse

Index

[,MsExperiment,ANY,ANY,ANY-method
(experimentFiles), 4

dbWriteSampleData, 2

existMsExperimentFiles
(MsExperimentFiles), 11

experimentFiles, 4
experimentFiles<- (experimentFiles), 4

filterSpectra,MsExperiment,function-method
(experimentFiles), 4

IRanges::LogicalList(), 11

length,MsExperiment-method
(experimentFiles), 4

linkSampleData (experimentFiles), 4

MsExperiment (experimentFiles), 4
MsExperiment(), 12
MsExperiment-class (experimentFiles), 4
MsExperimentFiles, 11
MsExperimentFiles(), 5
MsExperimentFiles-class

(MsExperimentFiles), 11

otherData (experimentFiles), 4
otherData<- (experimentFiles), 4

qdata (experimentFiles), 4
qdata<- (experimentFiles), 4

readMsExperiment, 12
readMsExperiment(), 7

sampleData (experimentFiles), 4
sampleData<- (experimentFiles), 4
show,MsExperiment-method

(experimentFiles), 4
show,MsExperimentFiles-method

(MsExperimentFiles), 11

Spectra(), 5–7, 9, 12
spectra,MsExperiment-method

(experimentFiles), 4
spectra<-,MsExperiment-method

(experimentFiles), 4
spectraSampleIndex (experimentFiles), 4

14

	dbWriteSampleData
	experimentFiles
	MsExperimentFiles
	readMsExperiment
	Index

