The ChlIPanalyser User’s Guide

Patrick Martin
22/08/2017

Introduction

Transcriptional regulation is undeniably a key aspect of cellular homeostasis. It comes to no surprise that
modern molecular biology and genomics have showed a keen interest in the subject. Transcription factors
(TF) are a force to be reckoned with in the world of transcriptional regulation. Transcription factors are
proteins that bind to DNA in a site-specific manner. Experimentally, this binding site can be determined by
various methods such as SELEX-seq, EMSA or DNAse footprinting. The final result will be a sequence to
which a given TF will bind preferentially. In many case, these results are presented in the form of a Position
Frequency Matrix or Position Weight Matrix. However at a genome wide scale, modern molecular biology
relies on methods such as Chromatin Immuno-precipitation linked to sequencing. This method generates a
genome wide profile with peaks at sites of high TF occupancy. These experiments may be very costly and it
would be interesting to be able to predict TF occupancy sites in silico. With this idea in mind, we present
ChIPanalyser , a R package developed in the effort of predicting Transcription factor binding. At the core
of this package resides an approximation of statistical thermodynamcis as suggested by Zabet (Zabet et al.
2015). The statistical thermodynamcis framework proposed by Zabet offers a strong ground for binding site
prediction as it requires minimal data input. In its current version, ChIPAnalyser requires a DNA sequence, a
Position Weight Matrix, the number of bound molecules (or TFs bound to DNA) and a scaling factor for TF
specificity. To improve the accuracy of the model, it is also possible to incorporate DNA accessibility data.

Methods

As described above, ChIPAnalyser is based on an approximation of statistical thermodynamics. The core
formula describing TF binding is given by :

N - aj . e(%wj)

P(N,a,\w); = N-a; e€F=) 4 Ln |- eF=],

with

e N, the number of TF molecules bound to DNA

e a , DNA accessibility

e)\, a parameter scaling the specificity of a given TF
e w, a Position Weight Matrix.

Work Flow - Quick start

Example data Loading

Before going through the inner workings of the package and the work flow, this section will quickly demonstrate
how to load example datasets stored in the package. This data represents a minimal workable examples
for the different functions. All data is derived from real biological data in Drosophila melanogaster (The
Drosophila melanogaster genome can be found as a BSgenome).

library (ChIPanalyser)

Loading required package: GenomicRanges
Loading required package: stats4

Loading required package: BiocGenerics
Loading required package: parallel

##
Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':
#i#

clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':
##
IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':
##

Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data.frame, cbind, colMeans, colSums, colnames, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect,

is.unsorted, lapply, lengths, mapply, match, mget, order,

paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans,
rowSums, rownames, sapply, setdiff, sort, table, tapply,

union, unique, unsplit, which, which.max, which.min

Loading required package: S4Vectors

##
Attaching package: 'S4Vectors'

The following object is masked from 'package:base':
##
expand.grid

Loading required package: IRanges

Loading required package: GenomeInfoDb
Loading required package: Biostrings
Loading required package: XVector

##
Attaching package: 'Biostrings'

The following object is masked from 'package:base':
##
strsplit

Loading required package: BSgenome
Loading required package: rtracklayer

Loading required package: RcppRoll

#Load data
data(ChIPanalyserData)

Loading DNASequenceSet from BSgenmome object

if (!require("BSgenome.Dmelanogaster.UCSC.dm3", character.only = TRUE)){
source ("https://bioconductor.org/biocLite.R")
biocLite("BSgenome.Dmelanogaster.UCSC.dm3")
}

Loading required package: BSgenome.Dmelanogaster.UCSC.dm3

library (BSgenome.Dmelanogaster.UCSC.dm3)
DNASequenceSet <-getSeq(BSgenome.Dmelanogaster.UCSC.dm3)

#Loading Position Frequency Matriz
PFM <- file.path(system.file("extdata",package="ChIPanalyser"),"BCDSlx.pfm")

#Checking if correctly loaded

1s0O
[1] "Access" "DNASequenceSet" "PFM" "eveLocus"
[5] "eveLocusChip" "geneRef"

The global environment should now contain a few new variables: DNASequenceSet,PFM,Access,geneRef,
eveLocus, eveLocusChip.

o DNASequenceSet is DNAStringSet extracted from the Drosophila melanogaster genome (BSgenome). It
is advised to use a full genome sequence for this object.

e PFM is a path to file. In this case, it is a Position Frequency Matrix derived from the Bicoid Transcription
factor in Drosophila melanogaster. This PFM is in RAW format. Although it is possible to to directly
use a PFM R object, we chose to use a path to a file for this example. Most PFM’s downloadable
online will come in a text file (with various formats: RAW, TRANSFAC, JASPAR). ChIPanalyser is
capable of handling all these formats and parsing these files to usable objects within the package.

e Access is a GRanges object containing accessible DNA for the sequence above.

o geneRef is list of GRanges containing genetic information (exon, intron, 3'UTR, 5’UTR) for the sequence
above.

e evelocus is a GRanges object with genomic postion for the eve strip locus in Drosophila melanogaster.

o eveLocusChip is list containing real ChIP-seq data (normalised to each base pair) of the eve strip locus
in Drosophila melanogaster.

This section presents a quick work flow. For details on the work flow and objects, see section Work Flow -
Full Guide

Quick Start
Step 1 - Building Data objects

The first step is to set up your data storing objects. These objects will automatically compute Position
Weight Matrix from a Position Frequency Matrix, and Base Pair Frequency from a DNAStringSet. The
values that are provided in this example are extracted from real biological data.

NOTE:These values will differ depending on the source of the data and the data itself.

Building a genomicProftileParameters objects for data
storage and PWM computation
GPP <- genomicProfileParameters(PFM=PFM,PFMFormat="raw",

BPFrequency=DNASequenceSet,
ScalingFactorPWM = 1.5,
PWMThreshold = 0.7)

[,3] [,4]

6l [,7]1 [,8]
5 0 9
0 696 620

16 0 12

0.25 0.25

GPP

Object Class:genomicProfileParameters
#it

#i#

PWM:

[,1] [,2]

A .1267378 -0.8713677 -3.953162 1.983869
C

G

T -

[,8]

A -4.235561

C 1.831691

G -3.830305

T -1.657112

#i#

PFM:

[,11 [,2]1 [,3] [,4]1 [,8]1 [,
A 190 95 11 689 689

C 213 268 6 0 0

G 225 35 0 7 7

T 68 298 679 0 0 675 0 55
#i#t

PFMFormat: raw

#i#

PWM Scores at Sites higher than Threshold:
GRangesList object of length O:
<0 elements>

#i#

-

seqinfo: no sequences

#it

No Accessible DNA at Loci:

#i#

Genomic Profile Parameters:

Lambda: 1.5

BP Frequency: 0.25 0.25
Pseudocount: 1

Natural log: FALSE

Number Of Sites: O

maxPWMScore:

[,5]
1.983869

.3622577 0.7753635 1.962784 -9.445015 -9.445015

[,6] [,7]

0 -5.052697 -9.445015
0.2913871 0.6224195 -4.801159 -9.445015 -9.445015 -9.445015 1.998447
0.3703684 -2.3054635 -9.445015 -4.587034 -4.587034 -3.422647 -9.445015
1

1.954263 -9.445015

minPWMScore:
PWMThreshold: 0.7

Average Exponential PWM Score:

DNA Sequence Length:
Strand Rule: max
Strand: +-

Building occupancyProfileParameters with default values
OPP <- occupancyProfileParameters()
OPP

Object Class:occupancyProfileParameters
##

Ploidy: 2
boundMolecules: 1000

backgroundSignal: 0O
maxSignal: 1

chipMean: 150

chipSd: 150

chipSmooth: 250

Step Size: 10

Theta Threshold: 0.1

Building occupancyProfileParameters with custom values
OPP <- occupancyProfileParameters(ploidy= 2,
boundMolecules= 1000,
chipMean = 200,
chipSd = 200,
chipSmooth = 250,
maxSignal = 1.847,
backgroundSignal = 0.02550997)
OPP

Object Class:occupancyProfileParameters
#i#
Ploidy: 2

boundMolecules: 1000

backgroundSignal: 0.02550997
maxSignal: 1.847

chipMean: 200

chipSd: 200

chipSmooth: 250

Step Size: 10

Theta Threshold: 0.1

Step 2 - Optimal Parameters

The model is based on the approximation of statistical thermodynamics with inference of two parameters (Scal-
ingFactorPWM and boundMolecules). In order to infer these parameters, we suggest to use computeOptimal.
Values that should be tested for ScalingFactorPWM and for boundMolecules should be provided by user as
described above. If these values are not provided (default value OR only one value for each parameter), then
they will be assigned internally. The internal values are the following;:

ScalingFactorPWM(genomicProfileParameters) <- c(0.25, 0.5, 0.75, 1, 1.25,
1.5, 1.75, 2, 2.5, 3, 3.5 ,4 ,4.5, 5)

boundMolecules (occupancyProfileParameters) <- c(1, 10, 20, 50, 100,
200, 500,1000,2000, 5000,10000,20000,50000,

200000, 500000, 1000000)

computeOptimalcontains the following arguments:

100000,

optimalParam <- computeOptimal (DNASequenceSet = DNASequenceSet,
genomicProfileParameters = GPP,
LocusProfile = eveLocusChip,

##
##
##
##
##
##

setSequence = evelocus,

DNAAccessibility = Access,

occupancyProfileParameters = OPP,

parameter = "all",

peakMethod="moving_kernel")

Computing Genome Wide PWM Score

Computing PWM Score at Loci & Extracting Sites Above Threshold

Computing Occupancy

Computing ChIP-seq-like Profile

Computing Accuracy of Profile

Extracting Optimal Set of Parameters

optimalParam

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

$ Optimal Parameters”

$ Optimal Parameters” $meanCorr

[1] "0.75" "be+05"

$ Optimal Parameters” $meanMSE

(1] "1.25" "1000"

$ Optimal Parameters” $meanTheta

(1] "1.25" "1000"

$ Optimal Matrix®

$ Optimal Matrix” $meanCorr

1 10
0.25 0.8435269 0.8342830
0.5 0.8242734 0.8191801
0.75 0.8429730 0.8444026
1 0.7379446 0.7689522
1.25 0.7671239 0.7900837
1.5 0.7283106 0.7496309
1.75 0.5823179 0.6035664
2 0.4845802 0.4948444
2.5 0.3647584 0.3726325
3 0.3005580 0.3063813
3.5 0.3003317 0.3041450
4 0.3001897 0.3027362

20

0.8093797
0.8076173
0.8392846
0.7885026
0.8064706
0.7725609
0.
0
0
0
0
0

6263213

.5119707
.3772826
.3127481
.3083337
.3055418

O OO OO OO OO OoOOoOOo

50

. 7578630
.7831160
.8277879
.8099659
.8280682
.8026694
.6781727
.5612225
.3992819
.3312094
.3206006
.3138110

O OO OO OO OO OoOOoOOo

100

. 7256334
. 7663309
.8123382
.8151623
.8352377
.8226631
.7290164
.6138851
.4491398
.3599365
.3400799
.3271125

O O O OO OO OO OoOOoOOo

200

.7109625
.7572188
.8003016
.8142855
.8380781
.8277529
.7711215
.6853372
.5201538
.4104222
.3756586
.3520083

500

.7143568
.7576516
.8010699
.8164442
.8345198
.8357009
.8038425
.7627732
.6034785
.5189434
.4599116
.4148106

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

(¢
[¢)] (¢)] ~N 0N ~N O N
(4] o (é)] ()
O OO OO0 OOO OO O OO o o

AP WWONMNNRL, PP PEP,OOO
[(é)] (] ~N O N ~N 0N (]
o [l ¢z} [l
O O O OO O OO OO OO oo

O P WWONNRFR,R PP EPR,OOO
(]

[é)] (¢)] ~N 00N ~N O N
(4] o (é)] ()

AP WWONMNNRL,PFPPPEP,OOO
~N 0N (]
(&2

= O O O
(é)]

15.
15.
15.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.

w > O ©

.3001006
.3000437

1000

.7236881
. 7652147
.8061322
.8203381
.8367129
.8368432
.8161703
.7964770
.6798135
.6168327
.5494787
.4897657
.4426567
.4076712

2e+05

.8109340
.8400572
.8432930
.8385323
.8057857
.T777255
.7405593
.7049411
.6334533
.5827595
.5525586
.5352262
.5248570
.5178524

1
12395
14775
06633
87247
94691
85102
82695
73011
84301
88146
88582
88832
88977
89065

1000
.898730
.127293
.460814
.959862

O OO O OO0 OO OO O OO o

$ Optimal Matrix®

14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

.3018503
.3012842

2000

.7311739
TTTT7754
.8145761
.8287708
.8387343
.8377148
.8278558
.8138327
. 7436438
.6966421
.6376305
.5760687
.5202375
.4740565

5e+05
8295861
8384581
8463342
8182547
7798274
7467306
6941079
6382310
5456158
4917561
4635016
4490886
4418802
4383425

$meanMSE
10
21461 13
49972 13
49815 13
32789 13

2000

12.722131

7.909539
5.588840
4.631050

.3037820
.3026555
5000
.7364203
.8004981
.8287463
.8379507
.8419233
.8390813
.8318925
.8243079
.7821902
.7516581
.7116756
.6649005
.6157053
.5685194
1e+06
.8358922
.8369426
.8440491
.7971591
.7642323
.7165258
.6454311
.5761837
.4799302
.4309691
.4072382
.3958365
.3905427
.3883538

20

.23944 10
.80666 11
.90746 12
.78662 12
48733 14.
44607 14.
44046 14.
41764 14.
66748 14.
78166 14.
82522 14.
85014 14.
86469 14.
87346 14.

01461 12
02404 12

09193 13
47833 13

5000

15.303409

9.215280
7.166123
6.400719

0.3094991
0.3067258

10000
.7405083
.8175934
.8354265
.8420426
.8443199
.8384984
.8306914
.8208994
. 7869273
.7609388
.7302299
.6951890
.6571144
.6181697

O OO O OO0 OO0 OO oo

50

.79892 8.
.97720 9
.30614 10
.40288 10
.79316 11.
.95486 11
04332 13.
.29066 12.
.90115 12
67103 14.
75792 14.
80773 14.
83682 14.
85436 14.

11677 11

34096 13.
55638 14.
68053 14.
75320 14.
79704 14.

10000
16.160629
9.201580
7.894866
7.546960

.698463
.266348
.588732

.513258
.874841

.938717 11

0.3187735
0.3133666

20000
. 7483979
.8304955
.8384978
.8445218
.8445630
.8348416
.8234392
.8070174
.7746124
. 7481344
.7218538
.6949361
.6667172
.6374511

O OO OO OO OO0 OO oo

100
246195

160155

© ©O© 00 00 ~N~NO»

176645 10

798384 12
222098 13.
468804 14.
613830 14.
701483 14.
20000
16.068934
8.947431
8.393396
8.488909

.338610
.069336
.609517
.0856813
.729014
.380928
.936094
.502878
.612982
.751281

0.3364101
0.3261313

50000
.7683033
.8377855
.8402069
.8461446
.8375789
.8192797
.8002894
. 7730552
. 7349417
.7015738
.6755899
.6547311
.6361429
.6180478

O OO OO OO OO OO O OO o

200

© N O OO0 O N

[
o

562704
047445
335498
510387 13
50000
14.613783
8.763991
8.835339
9.765428

= e
w N =

0.3827839
0.3606474

le+05
.7896878
.8400819
.8415842
.8447290
.8246078
.7993414
LTT7T27476
.7427729
.6900998
.6478850
.6194948
.6006854
.5869749
.5754023

O OO OO OO OO0 OO oo

500

.188663
.224428
.694015
.852495
.208727
.830681
.549153
.362967
.170871
.673814
.845118
.818200
.510465
.940021

1le+05
12.861865
8.737897
9.170573
11.453707

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

$ Optimal Matrix” $meanTheta

OO D> WWwWNDNRL P =

AP P WWNNDNR, P, PP OOO

O P WWNNRFR, PP, EPE,OOO

WWNNRFE, PP, P, OOO

(%]

256 3
5 3
75 4
4
5 7
8
5 10.
11
5 12.
13.
25 1
5
75
1
26 2
5 3
75 4
5
5 8
9
5 10
10
5 10
9

~N O N ~N O N [é)] (¢)] (9] ~N 01N ~N 0N
(¢ ¥ [é)] ()] [é)] o é)] (¢
O OO OO0 OOOoOOoOo O OO O OO0 OO OO OO Oo

(9]

.692721
.835814
. 342797
.988651
.017935
.629886
135963
.335484

2e+05
.159997
773874
.630268
.212007
.596167
.317903
.458670
.070262
.609722
.379356
6.705068
7.280293
2.483718
4.352806

00 O O PN WD OO~

1

.1559489
.1523894
.1558465
.1463682
.1463682
.1463682
.1463682
. 1463682
. 1463682
.1463682
.1463682
.1463682
.1463682
. 1463682

1000

.1463682
.1463682
.1807142
.2071633
.2265844
.2181657
.1879365
.1596578
. 1463682
. 1463682
.1463682

219774 10.
014314 11.

O N 01w www

9

10
20
32

61
82
122
149
162

.997591
. 722497
. 768624
.984794
.471651
.522711
.997054
.438444
638032
564158

5e+05

.688598
8.
.814928
.329057
.031058
43.
.447404
.281302
.491255
.286541
. 728866
163.
157.
150.

954094

134382

918908
399812
126047

10

.1542399
.1514477
.1561108
.1463682
.1463682
.1463682

.1463682
.1463682
.1463682
.1463682
.1463682
.1463682
.1463682

0
0
0
0
0
0
.1463682 0.
0
0
0
0
0
0
0

2000

.1463682
.1463682
.1505966
.1789596
.2098099

.2196705
.2042346
.1463682
.1463682
.1463682

0
0
0
0
0
.2250411 0.
0
0
0
0
0

O© N O OO oo OO O»

.026234
.022811
.216138
.064756 10.
.941999 11.
.147709 10.
.142466 8.
.878056 7.
.964931 7.
.078687 7.

37

167
163

.1496359 0
.1493100 O
.1551646 0
.1463682 0
.1490980 0
.1463682 0
1463682 0.
.1463682 0
.1463682 0
.1463682 0
.1463682 0
.1463682 0
.1463682 0
.1463682 0

5000
.1463682 0
.1479939 0
.1532163 0
.1549180 0
.16566524 0
1661270 O.
.1537980 0O
.1523957 0O
.1463682 0
.1463682 0
.1463682 0

© 0 N

1le+06

.1565631
.121116
12.
26.
.2805611

54.

80.
109.
160.
.898645
.271534
160.
157.
153.

668697
240616

138043
364537
809345
148458

254837
278501
791510

20

.671015
.607104
.611625
436707
963012
394305
525504
334774
071300
470439

50

.1463682
.1463682
.15630391
.1497442
.15630910
.1483953

1463682

.1463682
.1463682
.1463682
.1463682
.1463682
.1463682
.1463682

10000

.1463682
.1511544
.1544513
.15566745
.1560955

15650192

.1535759
.1517656
.1463682
.1463682
.1463682

.514157
.806207
.219735
.246568
.689945
.173546
.386348
.844806
.878793
.019120

100

.1463682
.1463682
.1501828
.1507049
.1544164
.1520917
.1463682
.1463682
.1463682
.1463682
.1463682
.1463682
.1463682
.1463682

20000

.1463682
.1535397
.1550191
.1561328
.15661405
.15643432
.1522351
.1491991
.1463682
.1463682
.1463682

13.
18.
23.
30.
38.
42.

41

37.
31.
24.

214493
343158
471404
303889
389298
593175
.887097
418655
155742
824402

200

.1463682
.1463682
.1479575
.1505428
.1549415
.1530327
.1463682
.1463682
.1463682
.1463682
.1463682
.1463682
.1463682
.1463682

50000

.1463682
.1548875
.1553351
.1564329
.1548493
.1514662
.1479553
.1463682
.1463682
.1463682
.1463682

17.

25

33.

41
56

67.

70

67.

61
52

684895
.076909
121121
.877836
. 772459
033802
.376460
783001
.290223
.902116

500

.1463682
.1515391
.1706577
.1682525
.1602157
.1545020
.1486122
.1463682
.1463682
.1463682
.1463682
.1463682
.1463682
.1463682

le+05

.1463682
.1553120
.1555897
.1561712
.1524512
.1477800
.1463682
.1463682
.1463682
.1463682
.1463682

##

S
(@]

.1463682 0.1463682 0.1463682 0.1463682 0.1463682 0.1463682 0.1463682

4.5 0.1463682 0.1463682 0.1463682 0.1463682 0.1463682 0.1463682 0.1463682
5 0.1463682 0.1463682 0.1463682 0.1463682 0.1463682 0.1463682 0.1463682
2e+05 5e+05 1e+06
0.25 0.1499232 0.1533716 0.1545374
0.5 0.1553074 0.1550118 0.1547316
0.75 0.1559057 0.1564679 0.1560455
1 0.1550255 0.1512767 0.1473766
1.25 0.1489714 0.1463682 0.1463682
1.5 0.1463682 0.1463682 0.1463682
1.75 0.1463682 0.1463682 0.1463682
2 0.1463682 0.1463682 0.1463682
2.5 0.1463682 0.1463682 0.1463682
3 0.1463682 0.1463682 0.1463682
3.5 0.1463682 0.1463682 0.1463682
##t 4 0.1463682 0.1463682 0.1463682
4.5 0.1463682 0.1463682 0.1463682
5 0.1463682 0.1463682 0.1463682
##

##

$Parameter

[1] "all"®

This Function might take some time to compute. Do not be alarmed if it takes some time to
run. You should be notified of the progress of the function as it goes

This function is a combination of all the functions bellow with some more magic to it. In the following steps
we will describe each of the functions.

Step 3 - Genome Wide Scoring

Computing Genome Wide metrics that will be used further down the line.

genomeWide <- computeGenomeWidePWMScore (DNASequenceSet=DNASequenceSet,
genomicProfileParameters=GPP, DNAAccessibility = Access)

Scoring whole genome
Accessible DNA ~ Both strands
Computing Mean waiting time

genomeWide

Object Class:genomicProfileParameters

#i#

##

PWM:

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
A 0.1267378 -0.8713677 -3.953162 1.983869 1.983869 -5.052697 -9.445015
C 0.2913871 0.6224195 -4.801159 -9.445015 -9.445015 -9.445015 1.998447
G 0.3703684 -2.3054635 -9.445015 -4.587034 -4.587034 -3.422647 -9.445015
T -1.3522577 0.7753635 1.962784 -9.445015 -9.445015 1.954263 -9.445015
[,8]

A -4.235561

C 1.831691

##
##

##
##

##
##
##
##
##

##
#

##
##

##
##
##
##
##

##
#

##
##

##
#

##
##
##
##
##
##

##

##
##
#

G -3.830305
T -1.657112
PFM:

[,11 [,2]1 [,3] [,4] [,5]1 [,6]1 [,7]1 [,8]
A 190 95 11 689 689 5 0 9
C 213 268 6 0 0 0 696 620
G 225 35 0 7 7 16 0 12
T 68 298 679 0 0 675 0 55
PFMFormat: raw

PWM Scores at Sites higher than Threshold:

GRangesList object of length O:
<0 elements>

seqinfo: no sequences

No Accessible DNA at Loci:

Genomic Profile Parameters:

Lambda: 1.5
BP Frequency: 0.25 0.25 0.25 0.25

Pseudocount: 1

Natural log: FALSE

Number 0f Sites: O
maxPWMScore: 12.8606543674325
minPWMScore: -48.8262800777777
PWMThreshold: 0.7

Average Exponential PWM Score: 1.015637

DNA Sequence Length: 3112514
Strand Rule: max
Strand: +-

computeGenomeWidePWMScore will return a genomicProfileParameters object with updated values for
maxPWMScore, minPWMScore,averageExpPWMScore, and DNASequenceLength.

Step 4 - PWM Scores Above Threshold

Once genome wide scores have been computed, the genomeWide object (previously computed) should be
parsed to the next function. The next function will compute sites above the assigned threshold (see below)
for a given locus (or set of loci). If no Locus is provided then the whole genome will be considered.

SitesAboveThreshold <- computePWMScore(DNASequenceSet=DNASequenceSet,

genomicProfileParameters=genomeWide,
setSequence=eveLocus, DNAAccessibility = Access)

10

Processing DNA Acccssibility
Extracting Sites Above threshold

Object Class:genomicProfileParameters

[,2]

[,3]

.1267378 -0.8713677 -3.953162

[,4]
1.983869

.41 [,5]1 [,6] [,71 [,8]

689 689 5 0 9
0 0 0 696 620
7 7 16 0 12
0 0 675 0 55

PWM Scores at Sites higher than Threshold:

GRangesList object of length 1:

1.962784 -9.445015 -9.445015

[,5] [,6]

[,7]

1.983869 -5.062697 -9.445015

0
0.2913871 0.6224195 -4.801159 -9.445015 -9.445015 -9.445015
0
1

GRanges object with 412 ranges and 1 metadata column:
ranges strand

[5860705,
[5860709,
[5860715,
[5860728,
[5860758,

[6876629,
[5876635,
[6876641,
[5876666,
[5876684,

SitesAboveThreshold
##

##

##

PWM:

[,1]

A

C

G

T -1.3522577 0.7753635
[,8]

A -4.235561

C 1.831691

G -3.830305

T -1.657112

##

PFM:

[,11 [,2] [,3]
A 190 95 11
C 213 268 6
G 225 35 0
T 68 298 679
##

PFMFormat: raw
##

##

##

$eve

##

segnames
<Rle>
[1] chr2R
#H# [2] chr2R
#t [3] chr2R
[4] chr2R
[5] chr2R
ce R
[408] chr2R
[409] chr2R
[410] chr2R
[411] chr2R
[412] chr2R
##

##t ——————-

##

##

<IRanges>

5860712]
58607161
5860722]
5860735]
5860765]

58766361
5876642]
5876648]
5876673]
5876691]

<Rle>
+

+ o+ o+ 4+

PWMScore
<numeric>
-1.51655573585429
-5.33217184502491
9.13992557549757
5.05434682102833
-5.15370980167748

5.60817413411963
0.202790199774102
-4.47385601266488

2.21133362723558
-2.28895797651261

seqinfo: 1 sequence from an unspecified genome; no seqlengths

No Accessible DNA at Loci:

11

1.998447

.3703684 -2.3054635 -9.445015 -4.587034 -4.587034 -3.422647 -9.445015
1.954263 -9.445015

-
##

Genomic Profile Parameters:

Lambda: 1.5
BP Frequency: 0.25 0.25 0.25 0.25

Pseudocount: 1

Natural log: FALSE

Number Of Sites: O

maxPWMScore: 12.8606543674325
minPWMScore: -48.8262800777777
PWMThreshold: 0.7

Average Exponential PWM Score: 1.015637

DNA Sequence Length: 3112514
Strand Rule: max
Strand: +-

This function returns another genomicProfileParameters object with an updated A11SitesAboveThreshold
slot. This slot contains a GRanges object with sites above threshold and associated PWMScores.

Step 4 - compute Occupancy

From the PWMScores, ChIPanalyser will compute occupancy for each sites above threshold.

Occupancy <- computeOccupancy(SitesAboveThreshold,
occupancyProfileParameters= OPP)

Computing Occupancy at sites higher than threshold.

Occupancy

Object Class:genomicProfileParameters

#it

#it

PWM:

#it [,1] [,2] [,3] [,4] [,5] [,6] [,7]
A 0.1267378 -0.8713677 -3.953162 1.983869 1.983869 -5.052697 -9.445015
C 0.2913871 0.6224195 -4.801159 -9.445015 -9.445015 -9.445015 1.998447
G 0.3703684 -2.3054635 -9.445015 -4.587034 -4.587034 -3.422647 -9.445015
T -1.3522577 0.7753635 1.962784 -9.445015 -9.445015 1.954263 -9.445015
it [,8]

A -4.235561

C 1.831691

G -3.830305

T -1.657112

#it

PFM:

[,1]1 [,2] [,3] [,4] [,5] [,6] [,7] [,8]

A 190 95 11 689 689 5 0 9
C 213 268 6 0 0 0 696 620
G 225 35 0 7 7 16 0 12
T 68 298 679 0 0 675 0 55

12

##
##

##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

##

##
##
##

##
#

##
##

##
##
#i#
##
##
##

PFMFormat: raw

PWM Scores at Sites higher than Threshold:

$ lambda = 1.5 & boundMolecules
GRangesList object of length 1:
$eve

GRanges object

segnames
<Rle> <IRanges>
eve chr2R [5860705, 5860712]
eve chr2R [5860709, 5860716]
eve chr2R [5860715, 5860722]
eve chr2R [5860728, 5860735]
eve chr2R [5860758, 5860765]
eve chr2R [5876629, 5876636]
eve chr2R [5876635, 5876642]
eve chr2R [5876641, 5876648]
eve chr2R [5876666, 5876673]
eve chr2R [5876684, 5876691]
Occupancy
<numeric>
eve 0.0138683203024566
eve 0.0138160293072631
eve 0.0783704718441574
eve 0.0183246335750422
eve 0.0138165926852252
eve 0.0203268664876583
eve 0.0139901018008407
eve 0.0138194725807681
eve 0.014492381648295

eve 0.0138454813805688

1000~

<Rle>

+

+ 4+ + +

with 412 ranges and 2 metadata
ranges strand

columns:

PWMScore
<numeric>
.51655573585429
.33217184502491
.13992557549757
.05434682102833
.156370980167748

.60817413411963
0.202790199774102
-4.47385601266488

2.21133362723558
-2.28895797651261

seqinfo: 1 sequence from an unspecified genome; no seqlengths

No Accessible DNA at Loci:

Genomic Profile Parameters:

Lambda: 1.5

BP Frequency: 0.25 0.25

Pseudocount: 1
Natural log: FALSE
Number 0Of Sites: O

maxPWMScore: 12.8606543674325
minPWMScore: -48.8262800777777
PWMThreshold: 0.7

0.25

0.

13

25

Average Exponential PWM Score: 1.015637

DNA Sequence Length: 3112514
Strand Rule: max
Strand: +-

This function will return a genomicProfileParameters object with an updated A11SitesAboveThreshold.
Now the Occupancy values for each sites are included.

Step 5 - compute ChIP -seq like profiles

The ultimate goal of ChIPanalyser is to produce ChIP-seq like profile predicting transcription factor binding.
To do so, the following function will compute ChIP-seq like scores from occupancy values.

chipProfile <- computeChipProfile(setSequence = evelocus,
occupancy = Occupancy,occupancyProfileParameters = OPP,
method="moving_kernel")

Computing ChIP Profile

chipProfile

$ lambda = 1.5 & boundMolecules = 1000"

$ lambda = 1.5 & boundMolecules = 1000 $eve

GRanges object with 1600 ranges and 1 metadata column:

#it sequnames ranges strand | ChIP
#Hit <Rle> <IRanges> <Rle> | <numeric>
eve chr2R [5860693, 5860703] * | 0.0467998729244692
eve chr2R [5860703, 5860713] * | 0.051053053031132
eve chr2R [5860713, 5860723] * | 0.0554324704104929
eve chr2R [5860723, 5860733] * | 0.059949075887137
eve chr2R [5860733, 5860743] * | 0.0646141633273505
. c.. c.. e ce
eve chr2R [5876643, 5876653] * | 0.0158243321666681
eve chr2R [5876653, 5876663] * | 0.0149496630784295
eve chr2R [5876663, 5876673] * | 0.0140710281760898
eve chr2R [5876673, 5876683] * | 0.0131862304147329
eve chr2R [5876683, 5876693] * | 0.0122930573390848

-
seqinfo: 1 sequence from an unspecified genome; no seqlengths

This function will return aList of GRangesLists of GRanges. Each element of the list represents a combination
of ScalingFactorPWM and boundMolecules. The GRangesList contains the Loci of interest. Finally, the
individual GRanges contains ChIP-seq like scores for every n base pairs (with n = stepSize, see bellow).

This object may be difficult to navigate if many different parameters, or Loci are used. In order to facilitate
navigation, we included a search function. See function: searchSites This function can also be used to
navigate Al1SitesAboveThreshold slot after occupancy scores have been computed.

Step 6 - Model Accuracy

In order to plot the model accuracy (predicted model against real ChIP-seq data).

AccuracyEstimate <- profileAccuracyEstimate(LocusProfile = eveLocusChip,
predictedProfile = chipProfile, occupancyProfileParameters = OPP)
AccuracyEstimate

14

$°lambda 1.5 & boundMolecules 1000°

$ lambda = 1.5 & boundMolecules 1000" $eve

Corr MSE meanCorr meanMSE meanTheta
0.836843223 0.003835814 0.836843223 3.835814393 0.218165724

5
5

Step 7 - Plotting

Finally, once all has been computed, it is possible to plot the results.

Plotting Optimal heat maps
plotOptimalHeatMaps (optimalParam, parameter="all")

Correlation

1 10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 1e+05 20405 5e+05 1e+06

Number of bound molecules

Mean Squared Error

5 = 149 149
45 o 149 14.9
4 < 149 149
35 149 1438
3 o 149 1438
25 1458 147
2 o 147 144
<
175 o 1438 14.4
15 149 14.4
125 o 149 145
1 149 143
075 = 151 145
05 = 151 145
025 = 151 142

1 10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 1e+05 20405 5e+05 1e+06

Number of bound molecules

Optimal Parameters — Theta (Corr/MSE)

1 10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 1e+05 20405 5e+05 1e+06

Number of bound molecules

Plotting occupancy Profile
plotOccupancyProfile(predictedProfile=chipProfile[[1]][[1]],
setSequence=evelocus,
profileAccuracy = AccuracyEstimate[[1]][[1]],

15

chipProfile = eveLocusChip[[1]],

occupancy = AllSitesAboveThreshold(Occupancy) [[1]1][[1]],
DNAAccessibility = Access,

occupancyProfileParameters = OPP,

geneRef = geneRef)

eve TER94

I I I I I I I I I I I I I I I I
5860693 5862693 5864693 5866693 5868693 5870693 5872693 5874693

DNA Position chr2R 5860693:5876692

Work Flow - Full Guide

This section will describe ChIPanalyser’s work flow. However in this section we will describe in detail data
objects, parameters, and functions. Please refer to this section if in doubt. If the doubt persists, don’t hesitate
to send an email to the maintainer.

Data objects - Genomic Profile Parameters

The very first aspect to consider when using ChIPAnalyser is data input. Many (if not all functions) require
specific data inputs and parameters in order to carry out the computation. To facilitate, the storage of these
parameters, we created a genomicProfileParameters object (S4 class). This is the very first step before any
other work. All other functions rely on this genomicProfileParameters object in one form or another. The
output of most functions will be a genomicProfileParameters object. Thus the output of one functions
should be used as an input for the next functions in the pipeline. All functions are described bellow in section
Work Flow - Analysis.

This object comes in the following form:

genomicProfileParameters(PWM, PFM, ScalingFactorPWM, PFMFormat, pseudocount,
BPFrequency, naturallog, noOfSites,
minPWMScore, maxPWMScore, PWMThreshold,
Al1SitesAboveThreshold, DNASequencelength,
averageExpPWMScore, strandRule,whichstrand, NoAccess)

16

To build a genomicProfileParameters object :

Assign Value wanted for each parameter

GPP <- genomicProfileParameters(PWM, PFM,ScalingFactorPWM, PFMFormat,
pseudocount, BPFrequency, naturallog, noOfSites,
PWMThreshold, DNASequencelLength,
strandRule, whichstrand)

As one can see, genomicProfileParameters contains many arguments. However many of these arguments al-
ready have default values assigned to them. Some of the arguments should not be set by user. These values are
computed internally and will automatically updated (minPWMScore, maxPWMScore, AllSitesAboveThresh-
old, NoAccess). In this situation, most arguments are not required to build a genomicProfileParameters
object and a minimal build can be described as:

return empty genomicProfileParameters object

GPP <- genomicProfileParameters()

return minimal working object

GPP <- genomicProfileParameters(PFM=PFM,PFMFormat="raw"
Suggested Minimal Build

GPP <- genomicProfileParameters(PFM=PFM,PFMFormat="raw",
BPFrequency=DNASequenceSet)

Although many parameters have assigned default values, it is recommended to use custom parameters to
better fit the needs of the analysis. The method described above will build a new genomicProfileParameters
object with the values that were assigned to each argument. Only three slots are required in order to build
a genomicProfileParameters object (see below - The compulsory ones).Most other slots are optional.
If after building genomicProfileParameters, you wish to modify the value of only one slot and keep the
values that you had previously assigned, it is possible to modify each slot individually by using the slot
access/setter methods. Each slot and it’s access/setter method is described below.

Position Matricies - The compulsory ones

e PWM , a Position Weight Matrix. If a Position Weight Matrix is readily available it is possible to directly
use this Matrix. This PWM should contain four rows (one for each base pair; ACTG in order). The
number ¢ olumns will depend on the length of the preferred binding motif of a given Transcription
Factor. This argument is only necessary IF and ONLY IF, no PFM (Position Frequency Matrix) is
available. Choosing between PWM or PFM comes down to personal choice as long a PWM is available for
further computation (see PFM). If a PFM is available (see below), the Position Weight Matrix will be
directly computed from the Position Frequency Matrix. Although it is possible to assign a new PWM
to the genomicProfileParameters object without creating a new object, we suggest that if you were
to decided to use another Position Weight Matrix to create a new genomicProfileParameters.

#Accessing PositionlWeightMatriz slot
PositionWeightMatrix (GPP)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
A 0.1267378 -0.8713677 -3.953162 1.983869 1.983869 -5.052697 -9.445015
C 0.2913871 0.6224195 -4.801159 -9.445015 -9.445015 -9.445015 1.998447
G 0.3703684 -2.3054635 -9.445015 -4.587034 -4.587034 -3.422647 -9.445015
T -1.3522577 0.7753635 1.962784 -9.445015 -9.445015 1.954263 -9.445015
[,8]
A -4.235561
C 1.831691
G -3.830305
T -1.657112

17

Setting PositionlWetightMatriz slot
PositionWeightMatrix (GPP) <- newPWM
This is not the advised method
newPWM is a matrix following the format described above

e PFM, a Position Frequency Matrix. The Position Frequency Matrix argument may come in multiple forms:
in the form of a Matrix containing four rows (one for each base pair ACTG) and columns depending of
the length of the binding motif or in the form of a path to file linking to a PFM. Position Frequency
Matricies come in various configurations. The most common ones (all supported by ChIPAnalyser)
are RAW (similar to the simple matrix described previously), Transfac and JASPAR. Finally, if the
binding sequences are available, the PFM will be generated from sequence information. We suggest to
use a path/to/file linking towards the PFM file. Most PFM will come in one of the formats described
above and ChIPanalyser will parse these files in a usable format. However, PLEASE NOTE THAT
THE FORMAT SHOULD BE SPECIFIED. See PFMFormat bellow.

If a PWM is readily available, PFM is not necessary. However, keep in mind that at least one is necessary.
Although it is possible to assign a new PFM to the genomicProfileParameters object without creating a
new object, we suggest that if you were to decided to use another Position Frequency Matrix to create a new
genomicProfileParameters.

Accessing PositionFrequencyMatriz slot

PositionFrequencyMatrix (GPP)

[,11 [,2] [,3] [,4]1 [,5] [,6] [,7]1 [,8]
A 190 95 11 689 689 5 0 9
C 213 268 6 0 0 0 696 620
G 225 35 0 7 7 16 0 12
T 68 298 679 0 0 675 0 55

Setting PositionFrequencyMatrixz slot
PositionFrequencyMatrix (GPP) <- newPFM

In this situation, newPFM is either a path to file or a PFM matrix. The PFMFormat will be the one assigned
to the genomicProfileParameters object.

At least one of PWM or PFM is required to create a genomicProfileParameters storage object. If a PFM
is provided then the PWM will be automatically computed and updated.

e PFMFormat, a file format for PositionFrequencyMatrix file. When Loading a PFM from a file (as
described above), one should included the format of the file that they are using. PFMFormat may be
one of the following: “raw” “transfac”,“JASPAR” or “sequences”.

PFMFormat (GPP)

PFMFormat (GPP)<-"raw"

Default is set at “raw”.

All other arguments are optional however we strongly recommend to tailor the values assigned to
genomicProfileParameters to your needs. The following sections will describe these optional parameters.

Genomic Parameters - The optional ones

e ScalingFactorPWM , a scaling factor for TF specificity. Although this parameter is optional (Default
value is set at 1), the scaling factor (or lambda as described in the equations above) is crucial for
many functions (described below). ScalingFactorPWM, must be a positive numeric value or a vector
containing positive numeric values. The optimal value for ScalingFactorPWM may be inferred by using

18

computeOptimal. Different values for ScalingFactorPWM will influence the goodness of fit of the model.
For more information, see computeOptimal and profileAccuracyEstimate.

ScalingFactorPWM(GPP)
ScalingFactorPWM(GPP) <- 0.5
ScalingFactorPWM(GPP) <- c(0.5, 1, 1.5, 2)

e PWMpseudocount, a probability modifier. When computing a PWM from a PFM, it is possible that certain
base pairs are completely absent from the Position Frequency Matrix. This absence will lead to odd
results as part of this transformation requires a logarithmic transformation (at Position probability
matrix step - a Matrix that describes the simple probability of a base pair being in that position of a
binding motif given the PFM). zeroes will give minus infinities. In order to overcome this problem,a
PWMpseudocount is introduced in the Position Probability Matrix. a PWMpseudocount of 1 (Default
Value is 1) will then become a 0 after logarithmic transformation thus removing any mathematical
discomforts.

PWMpseudocount (GPP)
PWMpseudocount (GPP) <- 1

e BPFrequency, the frequency at which each base pair will occur in a given organism. Probabilistically
speaking, all base pairs have an equal chance of occurring in the genome (Default value for this slot is set
at 0.25 per base pair). However, biologically speaking this is not the case. BPFrequency may be supplied
in various forms. If base pair frequency is known, it may be supplied as a vector containing the probability
of occurrence of each base pair. If however, this frequency is unknown, genomicProfileParameters
will compute BPFrequency from a BSgenome or a DNAStringSet. Bare in mind that BPFrequency is
used to generate a PWM from a PFM, thus if one were to change the BPFrequency after creating a
genomicProfileParameters with an already computed PWM , this would not influence the value of
the PWM. It would be necessary to rebuild a new genomicProfileParameters object.

BPFrequency (GPP)
BPFrequency (GPP)<-c(0.2900342,0.2101426,0.2099192,0.2899039)
BPFrequency (GPP) <- DNASequenceSet

« naturallog, a logical value. As described previously (see pseudocount), the transformation from PFM
to PWM requires a logarithmic transformation. The user may choose which logarithmic transformation,
they would rather apply (Default is TRUE). If naturalLog = TRUE, then the natural logarithm will be
used for transformation. If naturallog = FALSE, then log2 will be used instead. Keep in mind that,
the goal is to avoid any funky business during PFM to PWM transformation (e.g. Minus infinities or
division by zero).

naturalLog(GPP)
naturalLog(GPP) <- FALSE
e noOfSites , the number of sites used to compute the PWM from the PFM. In the event that a PFM contains
a large amount of sites (as it sometimes is the case with Transfac PFM), it is possible to restrict this

number of sites. The default value is 0. When no0fSites = 0, the whole PFM is used to compute the
PWM.

no0OfSites (GPP)

no0fSites(GPP) <- 8

19

o PWMThreshold, a numeric threshold against which PWMScores are selected (Default is 0.7). Although
it is possible to compute every single motif present in a stretch of DNA (if this is of interest, set
PWMThreshold to 0), in most cases, only the sites with a high PWM Score will be of interest. The
PWMThreshold , a numeric value between 0 and 1, will select regions above that given threshold. For
the default threshold of 0.7, only the top 30% of PWMScores will be selected.

PWMThreshold (GPP)

PWMThreshold (GPP) <- 0.7

» strandRule, indicates how the genome should be scored with the PWM (Default is “max”). As DNA
is double stranded, it is necessary to specify how a strand of DNA should be scored. If strandRule
= "max", both strands will be scored and the highest score between each strand will be selected.

If strandRule = "sum", both strands will be scored and their respective score will be summed. If
strandRule = "mean", both strands will be score and the average score between both strands will
selected as PWM Score. Only three possibilities: “max”, “sum” and “mean”

strandRule (GPP)

strandRule (GPP) <- '"mean"

o whichstrand, indicates which strand will be used to score the genome with the PWM (Default is both
strand and is indicated by “+4-"). Three options exist: plus strand (“47), minus strand (“-”) or both
(‘4+_77 or 44_+?7).

whichstrand (GPP)

whichstrand (GPP) <- "+"

Genomic Parameters - The Updated ones

Some of the slots genomicProfileParameters should not be changed by user. We strongly advise against
changing these slots. Certain Parameters are updated after a certain computation has been carried out. For
example, maxPWMScore and minPWMScore are computed during the computeGenomeWidePWMScore function
(see below) and represent both the highest and the lowest score of the given DNA sequence. These slots will
be updated in the genomicProfileParameters object as one makes its way through the ChIPAnalyser work
flow. Essentially, they are place holders for information required further down the work flow. Only slots that
are of interest for the user are available for visualisation. If these slots have note been updated, the function
will not return any value.

e maxPWMScore, a numeric value describing the highest PWM Score on a given DNA sequence and the
value assigned to lambda. It is still possible to access this slot using:

maxPWMScore (Occupancy)

[1] 12.86065

o minPWMScore, a numeric value describing the lowest PWM Score on a given DNA sequence and the
value assigned to lambda. It is possible to access this slot using:

minPWMScore (Occupancy)

[1] -48.82628

o averageExpPWMScore a numeric value representing the exponential of the average PWM Score. This
score depends on the values assigned to lambda. It is possible to access this slot using:

averageExpPWMScore (Occupancy)

20

[1] 1.015637

e DNASequencelLength , a numeric value describing the length of the DNA sequence used. Although
theoretically one could provide this information, DNA length is automatically computed and the slot
updated during computeGenomeWidePWMScore function. The length of this sequence is the length of
the sequence used to compute the scores previously mentioned (maxPWMScore, minPWMScore and
averageExpPWDMScore). This means that if DNA accessibility data is provided, the length of the
sequence will only be the length of the accessible DNA.

DNASequenceLength (Occupancy)

[1] 3112514

o NoAccess, indicates if certain Loci of interest (see setSequence below) do not contain any accessible
DNA. Tt is possible that certain of the loci you have chosen do not contain any accessible DNA (no
overlap with DNA accessibility data provided). If this is the case, you will be notified during the
computation and the loci will be s tored in the NoAccess slot.

NoAccess (Occupancy)

[1] n_n

e AllSitesAboveThreshold, stores all sites above threshold with the associated PWM Score and Oc-
cupancy. This slot may contain a variety of objects however they all represent the same thing: it
will always contain at its core a GRanges object (slot class defined as “GRlist” - can be one of the
following GRangesList or list). This GRanges inlcudes sites above threshold (start, end and strand),
PWDMScores for those sites and possibly Occupancy (depending on what has already been computed).
GRanges are encapsulated in a GRangesList as each GRanges represent a specific Loci. This GRanges-
List may also be encapsulated in a list. This list will represent a combination of lambda and number of
bound Molecules (see boundMolecules). For more information on this list see computeOccupancy. It
is possible to access this slot by using:

AllSitesAboveThreshold(Occupancy)

$ lambda = 1.5 & boundMolecules = 1000
GRangesList object of length 1:

$eve

GRanges object with 412 ranges and 2 metadata columns:

seqnames ranges strand | PWMScore
#it <Rle> <IRanges> <Rle> | <numeric>
eve chr2R [5860705, 5860712] + | -1.51655573585429
eve chr2R [5860709, 5860716] + | -5.33217184502491
eve chr2R [5860715, 5860722] + | 9.13992557549757
eve chr2R [5860728, 5860735] + | 5.05434682102833
eve chr2R [5860758, 5860765] + | -5.15370980167748
. R . e .
eve chr2R [5876629, 5876636] + | 5.60817413411963
eve chr2R [5876635, 5876642] + | 0.202790199774102
eve chr2R [5876641, 5876648] - | -4.47385601266488
eve chr2R [5876666, 5876673] + | 2.21133362723558
eve chr2R [5876684, 5876691] + | -2.28895797651261
Occupancy

<numeric>

eve 0.0138683203024566
eve 0.0138160293072631
eve 0.0783704718441574
eve 0.0183246335750422
eve 0.0138165926852252

21

. .

eve 0.0203268664876583

eve 0.0139901018008407

eve 0.0138194725807681

eve 0.014492381648295

eve 0.0138454813805688

##

-

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Or
searchSites(Occupancy)

$ lambda = 1.5 & boundMolecules = 1000°
GRangesList object of length 1:

$eve

GRanges object with 412 ranges and 2 metadata columns:

segnames ranges strand | PWMScore
#i# <Rle> <IRanges> <Rle> | <numeric>
eve chr2R [5860705, 5860712] + | -1.51655573585429
eve chr2R [5860709, 5860716] + | -5.33217184502491
eve chr2R [5860715, 5860722] + | 9.13992557549757
eve chr2R [5860728, 5860735] + | 5.05434682102833
eve chr2R [56860758, 5860765] + | -5.15370980167748
. . . e .
eve chr2R [5876629, 5876636] + | 5.60817413411963
eve chr2R [5876635, 5876642] + | 0.202790199774102
eve chr2R [5876641, 5876648] - | -4.47385601266488
eve chr2R [5876666, 5876673] + | 2.21133362723558
eve chr2R [5876684, 5876691] + | -2.28895797651261
#it Occupancy

<numeric>

eve 0.0138683203024566

eve 0.0138160293072631

eve 0.0783704718441574

eve 0.0183246335750422

eve 0.0138165926852252

##

eve 0.0203268664876583

eve 0.0139901018008407

eve 0.0138194725807681

eve 0.014492381648295

eve 0.0138454813805688

##

——————-

seqinfo: 1 sequence from an unspecified genome; no seqlengths

The size of the A11SitesAboveThreshold slot will increase drastically as the number of values assinged to
ScalingFactorPWM (or lambda) and boundMolecules increases. In order to navigate and search this slot
with ease, it is possible to use the searchSites function (See below: searchSites).

22

Data Objects - Occupancy Profile Parameters

genomicProfileParameters represents a good chunk of the parameters needed to go through the entire
ChIPAnalyser work flow. However, there are more to come! A second parameter storing object was
created to handle non-compulsory parameters. This lightens genomicProfileParameters by handling
part of the parameters. This second S4 object is called occupancyProfileParameters. The interesting
aspect of this object is that none of the slots are compulsory. This means that if not provided , a new
occupancyProfileParameters object will be created internally. All default values will be used for further
computation. As stated previously, we strongly advise using custom parameters in order to increase goodness
of fit of model . It is especially the case here, as slots such as maxSignal are directly extracted from biological
data (ChIP-seq data - see computeChipProfile and profileAccuracyEstimate for more information).
OPP <- occupancyProfileParameters(ploidy = 2 ,boundMolecules = 1000 ,

backgroundSignal = 0 ,maxSignal = 1, chipMean = 150 , chipSd = 150 ,

chipSmooth = 250 , stepSize = 10 ,

removeBackground = O , thetaThreshold = 0.1)

As it is the case with genomicProfileParameters, it is also possible to access/set each slot individually
after having created an occupancyProfileParameters object. Each slot is described as the following:

e ploidy, the ploidy level of the of the organism of interest (Default is set at 2). This only considers
simple polyploidy (or haploidy). The model does not (yet) consider hybrids such as wheat.

ploidy (OPP)
ploidy(OPP) <- 2

e boundMolecules, a positive integer (or vector of positive integers) describing the number of bound
molecules (Transcription factors) to DNA (Default value is set at 2000). In this model, occupancy is
reliant on the number of bound molecules. The number of molecules will influence the goodness of
fit of the model. It is possible to infer the number of bound Molecules by using the computeOptimal
function. For more information, see computeOptimal and profileAccuracyEstimate.

boundMolecules (OPP)
boundMolecules (OPP) <- 5000

o backgroundSignal, a numeric value representing the background Signal in real ChIP-seq data (Default
is set at 0). It is strongly advised to set this parameter to the background Signal of the ChIP-seq data
you will be using.

backgroundSignal (OPP)
backgroundSignal (OPP) <- 0.02550997
o maxSignal, a numeric value representing the maximum signal in real ChIP-seq data (Default is set at
1). It is strongly advised to set this parameter to the maximum Signal of the ChIP-seq data you will be
using.
maxSignal (OPP)
maxSignal (OPP) <- 1.86
e chipMean, a numeric value representing the average peak width in base pairs in real ChIP-seq data

(Default is set at 150). It is strongly advised to set this parameter to the average peak width of the
ChIP-seq data you will be using.

chipMean (OPP)

chipMean(OPP) <- 150

23

e chipSd, a numeric value representing the standard deviation of peak width in real ChIP-seq data
(Default is set at 150). It is strongly advised to set this parameter to the SD peak width of the ChIP-seq
data you will be using.

chipSd (OPP)
chipSd(0OPP) <- 150

o chipSmooth, a numeric value representing the size of the window used for smoothing the profile (Default
is set at 250). The goal of ChIPAnalyser is to produce ChIP-seq like profile from predicted high
occupancy sites. In order to mimic these ChIP-seq profile, a smoothing algorithm is used to smooth
occupancy profiles. This algorithm uses ChIP-seq parameters such as chipMean, chipSd, maxSignal,
backgroundSignal and chipSmooth.

chipSmooth (OPP)
chipSmooth(OPP) <- 250

o stepSize, a numeric value describing the bin size (in base pairs) used for computing ChIP-seq like
profiles (Default is set at 10). In the case of long sequences, it not always necessary to include ChIP-like
occupancy at every base pair (mainly for speed and memory usage). stepSize will determine the size
of the bins used to split your sequence of interest. As an example, if your sequence is 16 000 bp long
with a stepSize of 10, the resulting profile will be composed of 1600 occupancy points.

stepSize (OPP)
stepSize (0PP) <- 10

e removeBackground, a numeric value describing a threshold at which Occupancy signals must be removed
(Default is set at 0).

removeBackground (OPP)
removeBackground (OPP) <- 0

e thetaThreshold, a numeric value describing the threshold used to calculate our in house theta value
(Default is set at 0.1). Theta is a metric used to demonstrate which parameters are optimal by maximising
the correlation and minimising the Mean Squared Error (MSE) between the predicted profile and actual
ChIP-seq profiles. The higher the value of theta, the better the ratio between correaltion and MSE.
Values below this threshold are discarded (replaced by Threshold) as they represent extremely poor
accuracy with actual ChIP-seq data.

thetaThreshold (OPP)

thetaThreshold (OPP) <- 0.1

Work Flow - Analysis

Once a genomicProfileParameter object has been established, the rest of the analysis becomes fairly straight
forward. Unless, you already have prior knowledge on the number of bound molecules (boundMolecules)
and the PWM scaling factor (ScalingFactorPWM or referred to as lambda), we advise you to first infer
the optimal set of parameters as described in computeOptimal. However, as this function is essentially a
combination of all other functions in the package (with a little bit more magic to it), we will overview a
simple analysis work flow first and finish with computeOptimal function and its associated plotting function
plotOptimalHeatMaps.

24

Genome Wide Scoring

In order to score the entire genome (or the accessible genome), it is possible to use the computeGenomeWidePWMScore
function. The output of this function will be influenced by the value assigned to lambda. If more than one
value was assigned to the scaling factor, parameters dependant on lambda will be updated accordingly
(computed for each value of lambda). The arguments of the function are the following :

computeGenomeWidePWMScore (DNASequenceSet, genomicProfileParameters,

DNAAccessibility = NULL,

Input Data - Genome Wide scoring

As input, computeGenomeWidePWMScore requires to obligatory arguments: DNASequenceSet and
genomicProfileParameters. DNASequenceSet comes in the form of the following:
DNASequenceSet

A DNAStringSet instance of length 15

width seq names

[1] 23011544 CGACAATGCACGACAGAGG...ATGAACCCCCCTTTCAAA chr2L

[2] 21146708 GACCCGCTAGGAGATGTTG. ..TTTGCATTCTAGGAATTC chr2R

[3] 24543557 TAGGGAGAAATATGATCGC...AACCAAGTTAATGTTCGG chr3L

[4] 27905053 GAATTCTCTCTTGTTGTAG...TTCGCATTCTAGGAATTC chr3R

[6] 1351857 GAATTCGCGTCCGCTTACC...CGATTTGAGATATATGAA chr4

... e e

[11] 2555491 AACGAGGCCCATTTCATAC. ..ATGCCATTCGCTAGAAGT chr3LHet

[12] 2517507 CCCTGTTTGCATCAGCGTT. ..TAAAAACAATTTGCTCCC chr3RHet

[13] 204112 TAGATAGATAGATAGATAG. ..ATCGGAGTTAATGTTTGC chrXHet

[14] 347038 AGGGTCACGTAATGCTGAT...TTGTTTTCCCCGGGATTG chrYHet

[15] 29004656 ATTGAAAATGGATTGCATT...CAAGACCTTTCAAGACAA chrUextra

DNASequenceSet may also come in the form of a BSgenome object. However, we advise to use a DNAStringSet
for a question of ease and speed. If you are unfamiliar with BSgenome and DNAStringSet, the following

example demonstrates how to use these objects in this context.
#Extracting DNAStringSet from BSgenome

DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm3)

GenomeWide = TRUE, verbose = TRUE)

As a reminder a genomicProfileParameters are presented in the following format:

GPP

Object Class:genomicProfileParameters

##

#i#

PWM:

#i [,1] [,2] (,3] [,4] [,5] [,6] L,7]
A 0.1267378 -0.8713677 -3.953162 1.983869 1.983869 -5.052697 -9.445015
C 0.2913871 0.6224195 -4.801159 -9.445015 -9.445015 -9.445015 1.998447
G 0.3703684 -2.3054635 -9.445015 -4.587034 -4.587034 -3.422647 -9.445015
T -1.3522577 0.7753635 1.962784 -9.445015 -9.445015 1.954263 -9.445015
[,8]

A -4.235561

C 1.831691

G -3.830305

25

T -1.657112

##
PFM:

[,1] [,2] [,3] [,4] [,8]1 [,6]1 L,71 [,8]

A 190 95 11 689 689 5 0 9
C 213 268 6 0 0 0 696 620
G 226 35 0 7 7 16 0 12
T 68 298 679 0 0 675 0 55
##

PFMFormat: raw

##
PWM Scores at Sites higher than Threshold:

GRangesList object of length O:
<0 elements>

#i#

-

seqinfo: no sequences

##
No Accessible DNA at Loci:

#it
Genomic Profile Parameters:

Lambda: 1
BP Frequency: 0.25 0.25 0.25 0.25

Pseudocount: 1

Natural log: FALSE
Number Of Sites: O
maxPWMScore:

minPWMScore:

PWMThreshold: 0.7

Average Exponential PWM Score:

DNA Sequence Length:
Strand Rule: max
Strand: +-

DNAAccessibility is an optional argument in computeGenomeWidePWMScore. If present, then the genome
will be scored only on the accessible DNA. DNAAccessibility comes as a GRanges containing accessible
DNA sites.

DNA accessibility
Access

GRanges object with 4703 ranges and O metadata columns:

seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] chr2R [7339296, 7342564] *
(2] chr2R [9436993, 9437589] *
#i# (3] chr2R [15728083, 15728687] *
#i# [4] chr2R [4980200, 4980845] *
#it (5] chr2R [6028863, 6029419] *
#it

26

[4699] chr2R [21120053, 21120400]
#i# [4700] chr2R [21140572, 21140980]
#i# [4701] chr2R [21143160, 21143517]
[4702] chr2R [21144932, 21145281]
[4703] chr2R [21145564, 21146702]
o -

seqinfo: 6 sequences from an unspecified genome; no seqlengths

* ¥ ¥ ¥ *

Finally, verbose will determine if progress messages should be printed in the console.

computeGenomeWidePWMScore

As an example of computeGenomeWidePWMScore usage:
With DNAAccesstibility

GenomeWide <- computeGenomeWidePWMScore(DNASequenceSet = DNASequenceSet,
genomicProfileParameters = GPP, DNAAccessibility = Access)

GenomeWide
Without DNA accessibility

GenomeWide <- computeGenomeWidePWMScore (DNASequenceSet = DNASequenceSet,
genomicProfileParameters = GPP)
GenomeWide

Scoring sites above threshold

Once genome wide metrics have been computed, the next step in the analysis is to extract sites above
threshold (Sites with strong binding sites according to PWM Scores). The computePWMScore function will
score the genome and extract sites above a local threshold (dependant on PWMThreshold, maxPWMScore and
minPWMScore). The arguments of this functions are the following:

computePWMScore (DNASequenceSet, genomicProfileParameter,
setSequence = NULL, DNAAccessibility = NULL,verbose = TRUE)

Input Data - Sites Above threshold

Only two arguments are absolutely required: DNASequenceSet and genomicProfileParameters. However,
setSequence represents the Loci of interest. If setSequence = NULL, then sites above threshold will
computed and extracted on a genome wide scale (or accessible genome if DNA Accessibility is provided).
DNASequenceSet and DNAAccessibility are in the same format as previously described (verbose plays the
same role as previously described). setSequence is a GRanges representing the loci of interest (may contain
more than one loci/range) and comes in the following format:

eveLocus

GRanges object with 1 range and O metadata columns:

#it seqgnames ranges strand
<Rle> <IRanges> <Rle>
eve chr2R [5860693, 5876692] *
o -

seqinfo: 1 sequence from an unspecified genome; no seqlengths

27

An important aspect to mention, is that it is imperative you name your loci of interest (not to be confused with
seqnames). If you are unfamiliar with GRanges, the following examples demonstrates naming in the context
of ChIPAnalyser. We recommend getting acquainted with GenomicRanges as many aspect of ChIPAnalyser
require the use of GRanges.

Sequence names of Loct
seqnames (eveLocus)

factor-Rle of length 1 with 1 run
Lengths: 1
Values : chr2R
Levels(1): chr2R

Names of Loct

names (eveLocus)

[1] "eve"

Naming Loct in GRanges
names (eveLocus) <- "eve"

computePWMScore

To compute PWM Scores at sites above threshold:
With DNA Accessibility

PWMScores <- computePWMScore(DNASequenceSet = DNASequenceSet,
genomicProfileParameters = GenomeWide,
setSequence = eveLocus, DNAAccessibility = Access)
PWMScores

Without DNA Accessibility

PWMScores <- computePWMScore(DNASequenceSet = DNASequenceSet,
genomicProfileParameters = GenomeWide,
setSequence = evelocus)

PWMScores

As you can see, the genomicProfileParameters argument is the genomicProfileParameters object com-
puted in the previous example. ChIPAnalyser works in a sequential manner: resulting object from one
functions are often parsed as arguments to other functions. Finally, if your sequence of interest does not
contain any accessible DNA, you will be notified during the computation and it is possible to extract
inaccessible loci by using NoAccess (PWMScores) (See NoAccess slot in genomicProfileParameters).

Occupancy

Occupancy scores are computed using the formula described in Methods. It is worth mentioning that
Occupancy scores are dependant on values assigned to ScalingFactorPWM and boundMolecules. If more
than one value were to be assigned to these parameters, the resulting output will be a combination of both.
For more information see the computeOccupancy example as we will demonstrate multiple value computation
(Single Value for lambda and boundMolecules will return an object identical in structure as with multiple
values). The arguments for computeOccupancy are the following:

28

computeOccupancy (Al1SitesPWMScore, occupancyProfileParameters = NULL,
norm = TRUE,verbose = TRUE)

Input Data - Occupancy

computeOccupancy requires a genomicProfileParameters object result of the previous function
(computePWMScore). If you are unsure, if your genomicProfileParameter contains the right information, it
is possible to check by using:

Al1SitesAboveThreshold (PWMScores)

If your GRanges does not contain PWMScore as a metadata column, you are either using the wrong object
or you have not yet computed PWM Scores.

occupancyProfileParameters is an occupancyProfileParameters object. If not provided, a new one will
be generated internally. As previously mentioned, we strongly recommend to set those parameters to improve
the model’s goodness of it. As a reminder, a occupancyProfileParameters object (previously created - see
section Data object - Occupancy profile Parameters) should print on the screen as follows:

OPP

Object Class:occupancyProfileParameters
#i#

Ploidy: 2
boundMolecules: 1000

backgroundSignal: 0.02550997
maxSignal: 1.847

chipMean: 200

chipSd: 200

chipSmooth: 250

Step Size: 10

Theta Threshold: 0.1

Finally, if norm = TRUE, the occupancy profiles will be normalised and verbose = TRUE progress messages
will be printed to the console.

computeOccupancy

To compute Occupancy scores with computeOccupancy:

Occupancy <- computeOccupancy(Al1SitesPWMScore = PWMScores,
occupancyProfileParameters = OPP)
Occupancy

As it is the case in the previous functions, A11SitesPWMScore should be the result of the previous function
(computePWMScore). computeOccupancy will return a genomicProfileParameters object with an updated
A11SitesAboveThreshold slot. This slot should now contain a list of GRangesLists containing GRanges
(one for each Loci of interest) with two metadata columns (PWMScore and Occupancy). Each element in
the list is named with the specific combination of lambda and boundMolecules used to compute this set of
occupancies. Finally, if your sequence of interest does not contain any accessible DNA, you will be notified
during the computation and it is possible to extract inaccessible loci by using NoAccess (PWMScores) (See
NoAccess slot in genomicProfileParameters).

29

ChIP-seq like profiles

The ultimate goal of ChIPAnalyser is to produce ChIP-seq like profile from occupancy data (from sites that
display a high TF occupancy). computeChipProfile creates ChlP-seq like profiles from occupancy data by
smoothing occupancy profiles and mimicking real ChIP-seq data. The arguments of computeChipProfile
are the following:

computeChipProfile(setSequence ,
occupancy, occupancyProfileParameters = NULL, norm = TRUE,
method = c("moving_kernel","truncated_kernel","exact"),
peakSignificantThreshold= NULL,
verbose = TRUE)

Input data - ChIP-seq profiles

The computeChipProfile function requires two compulsory arguments setSequence and occupancy.
setSequence is a GRanges describing the loci of interest (this is the same GRanges used in computePWMScore).
occupancy is a genomicProfileParameters object result of computeOccupancy function. To make sure this is
the right genomicProfileParameters, you may use A11SitesAboveThreshold() (See AllSitesAboveThresh-
old slot description above). occupancyProfileParameters is an occupancyProfileParameters object. If
not supplied, it will be generated de movo internally. Once again, we recommend to set the parameters of
this object in relationship to real ChIP-seq data. norm = TRUE and method respectively represent if the
ChIP-seq like profile should be normalised and if you wish to use an approximation for ChIP-seq profile
or not. moving_kernel will use Rcpp to approximate and compute peaks, truncated_kernel will also
approximate peaks but without using Rcpp, and exact will not approximate peaks. These methods represent
different way of computing and/or approximating ChIP-seq peaks. Finally, peakSignificantThreshold
is a threshold at which peaks will be selected. If you select “moving kernel” then this threshold is a
numeric value describing the peak tail hight cut-off value. The default in this case is 0.001. In the case of
“truncated__kernel” and “exact”, the threshold represents a distance in base pair from the peak summit at
which the peak should be cut. In this case, default is set at 1250 base pairs.

It should be noted that these methods will produce very similar results. And by very similar results, we mean
nearly identical.

computeChipProfile

To generate a ChIP-seq like profile:

chipProfile <- computeChipProfile(setSequence = evelocus,
occupancy = Occupancy,occupancyProfileParameters = OPP)
chipProfile

The output of this functions is slightly different as it returns a named list (each element in the list is named
after the specific combination of lambda and boundMolecules used to compute occupancies) containing a
GRangesList of GRanges with ChIP profile values as a metadata column. These GRanges also differ in
the sense that they now contain the whole loci (or accessible loci) cut into bins of size equal to stepSize
(See stepSize slot in occupancyProfileParameters). Each GRangesList contains GRanges for each Loci of
interest.

Searching through SitesAboveThreshold and ChIP-seq profiles

As described previously, The size of the A11SitesAboveThreshold slot will increase drastically as the number
of values assigned to ScalingFactorPWM (or lambda) and boundMolecules increases. In order to navigate

30

and search this slot with ease, it is possible to use the searchSites function. This function may also be used
on predicted ChIP-seq profiles (result of computeChipProfile). searchSites comes in the following form:

searchSites(Sites,ScalingFactor="all", BoundMolecules="all",Locus="all")

It is possible to use this function as a simple extraction method similarly to the A11SitesAboveThreshold
method. In this case, the usage is the following:

searchSites (Occupancy)

$ lambda = 1.5 & boundMolecules = 1000°
GRangesList object of length 1:

$eve

GRanges object with 412 ranges and 2 metadata columns:

segnames ranges strand | PWMScore
<Rle> <IRanges> <Rle> | <numeric>
eve chr2R [5860705, 5860712] + | -1.51655573585429
eve chr2R [5860709, 5860716] + | -5.33217184502491
eve chr2R [5860715, 5860722] + | 9.13992557549757
eve chr2R [5860728, 5860735] + | 5.05434682102833
eve chr2R [5860758, 5860765] + | -5.15370980167748
#i# . . . e .
eve chr2R [5876629, 5876636] + | 5.60817413411963
eve chr2R [5876635, 5876642] + | 0.202790199774102
eve chr2R [5876641, 5876648] - | -4.47385601266488
eve chr2R [5876666, 5876673] + | 2.21133362723558
eve chr2R [5876684, 5876691] + | -2.28895797651261
it Occupancy

<numeric>

eve 0.0138683203024566

eve 0.0138160293072631

eve 0.0783704718441574

eve 0.0183246335750422

eve 0.0138165926852252

R R

eve 0.0203268664876583

eve 0.0139901018008407

eve 0.0138194725807681

eve 0.014492381648295

eve 0.0138454813805688

##

——————-

seqinfo: 1 sequence from an unspecified genome; no seqlengths

If you wish to navigate and extract only certain combinations of ScalingFactorPWM and/or boundMolecules
and/or Loci, searchSites could be use as shown below:

searchSites(chipProfile, ScalingFactor=c(1.5,2.5), BoundMolecules=c(1000,1500)
,Locus=c("eve","odd"))

$ lambda = 1.5 & boundMolecules = 1000°
$ lambda = 1.5 & boundMolecules = 1000 $eve
GRanges object with 1600 ranges and 1 metadata column:

#i# segnames ranges strand | ChIP
<Rle> <IRanges> <Rle> | <numeric>
eve chr2R [5860693, 5860703] * | 0.0467998729244692
eve chr2R [5860703, 5860713] * | 0.051053053031132

31

eve chr2R [56860713, 5860723] * | 0.0554324704104929

eve chr2R [5860723, 5860733] * | 0.059949075887137
eve chr2R [5860733, 5860743] * | 0.0646141633273505
##

.0158243321666681
.0149496630784295
.0140710281760898
.0131862304147329
.0122930573390848

eve chr2R [5876643, 5876653]
eve chr2R [5876653, 5876663]
eve chr2R [5876663, 5876673]
eve chr2R [5876673, 5876683]
eve chr2R [5876683, 5876693]
o -

seqinfo: 1 sequence from an unspecified genome; no seqlengths

* ¥ X ¥ *
O O O O O

Estimating the accuracy of the model

In order to determine how accurate the predicted model is, it is possible to compare the predicted ChIP-seq
like profile (as built in computeChipProfile) to real ChIP-seq data for a given Transcription Factors at loci
of interest. profileAccuracyEstimate provides a way to compare both profiles. The arguments for this
function are the following;:

profileAccuracyEstimate(LocusProfile,
predictedProfile, occupancyProfileParameters = NULL)

Input data - Accuracy Estimate

profileAccuracyEstimate requires only three arguments. precitedProfile is the result of
computeChipProfile and occupancyProfileParameters is a occupancyProfileParameters. Fi-
nally, LocusProfile is a list containing actual ChIP-seq profiles. These profiles should be normalised to a
base pair level. In other words, a peak should be divided by its width. We also strongly recommend that
each loci in LocusProfile (each element of the list) should be named in an identical manner as the loci used
in setSequence (See previous functions). This list should come in the following format:

str(eveLocusChip)

List of 1
$ eve: num [1:16000] 0.00755 0.00755 0.00755 0.00755 0.00755 ...

In this example, there is only one element in the list. However, this list can be as long as you wish and
contain all the Loci that you are interested in.

profileAccuracyEstimate

To test the accuracy the model against ChIP-seq data:

AccuracyEstimate <- profileAccuracyEstimate(LocusProfile = eveLocusChip,
predictedProfile = chipProfile, occupancyProfileParameters = OPP)
AccuracyEstimate

The result of this function will be a list of accuracy estimates for every loci and every combination of
ScalingFactorPWM and boundMolecules. The correlation and Mean Squared Error (MSE) represents the
correlation and MSE between the predicted profile (for a given combination on lambda and boundMolecules)
and the ChIP-seq profile for the same loci. meanCorr and meanMSE describe the average correlation and MSE
for all loci (for a given combination on ScalingFactorPWM and boundMolecules). The idea behind average
correlation and MSE is that the scaling factor and number of molecules should be the same regardless of the
loci as all TF’s are contained within the same nucleus. Finally, meanTheta is an in house metric describing a

32

modified ratio of correlation over MSE. The goal is to find the sweet spot between high correlation and low
MSE (see computeOptimal and plotOptimalHeatMaps).

Finding optimal Parameters

As described previously, it is not always possible to know the optimal set of parameters for ScalingFactorPWM
and boundMolecules. ChIPAnalyser offers the possibility to backward infer the parameters using the
computeOptimal function. By testing different combinations of ScalingFactorPWM and boundMolecules,
this function will return the combination with the highest correlation , lowest Mean Squared Error or highest
theta depending on which parameter was selected. As a reminder, theta is an in house metric representing a
modified ratio of correlation over MSE (extreme values are replaced by threshold). The goal is to find the
sweet spot between high correlation and low MSE. Values that should be tested for ScalingFactorPWM and
for boundMolecules should be provided by user. If these values are not provided (default value and only one
value for each parameter), then they will be assigned internally. The internal values are the following:

ScalingFactorPWM(genomicProfileParameters) <- c(0.25, 0.5, 0.75, 1, 1.25,
1.5, 1.75, 2, 2.5, 3, 3.5 ,4 ,4.5, 5)

boundMolecules (occupancyProfileParameters) <- c(1, 10, 20, 50, 100,
200, 500,1000,2000, 5000,10000,20000,50000, 100000,
200000, 500000, 1000000)

In terms of its arguments,computeOptimal can be described as:

computeOptimal (DNASequenceSet,
genomicProfileParameters,
LocusProfile,
setSequence,
DNAAccessibility = NULL,
occupancyProfileParameters = NULL,
parameter = "all",
peakMethod="moving_kernel")

Please note that this functions will take some time to complete. Do not be alarmed if it seems
to have stalled.

Input Data - Optimal Parameters

computeOptimal is essentially a combination of previous functions (with a bit more magic to it). For this
reason, data input in extremely similar to the functions described above. As a quick reminder:

o DNASequenceSet, a DNAStringSet (or BSgenome) containing the sequences of the organism of interest.

o genomicProfileParameters, a genomicProfileParameters object containing at least a Position
Weight Matrix or Position Frequency Matriz. All other slots will be computed internally.

e LocusProfile, a named list of ChIP-seq profile for loci of interest.

e setSequence, a named GRanges containing loci of interest.

e DNAAccessibility, a GRanges containing Accessible DNA.

e occupancyProfileParameters, an occupancyProfileParameters object. Although optional, we
strongly advise to tailor this object by using values directly extracted from LocusProfile

parameter defines which metric you wish to compute. There are four possible choices: correlation, MSE,
theta or all. It is imperative that the lists/GRanges are named with the name of the Loci of interest.
peakMethoddescribes if you wish to use an approximation for ChIP-seq profile peaks. moving_kernel will
use Repp to approximate and compute peaks, truncated_kernel will also approximate peaks but without

33

using Repp, and exact will not approximate peaks. These methods represent different way of computing
and/or approximating ChIP-seq peaks.

computeOptimal

As a example describing the usage of compute optimal

optimalParam <- computeOptimal (DNASequenceSet = DNASequenceSet,
genomicProfileParameters = GPP,
LocusProfile = eveLocusChip,
setSequence = evelocus,
DNAAccessibility = Access,
occupancyProfileParameters = OPP,
parameter = "all")
optimalParam

This functions returns either a list or a list of lists (if “all” parameter was selected). Each element in the
list represents the optimal set of parameters, the optimal matrix (a matrix with correlation, MSE
and/or theta computed for a given combination of ScalingFactorPWM and boundMolecules) and finally the
selected parameter.

Plotting Results

As it is the case in mamy fields, data visualisation is a key aspect in any analysis. For this purpose,
ChIPAnalyser offers two plotting functions: plotOptimalHeatMaps and plotOccupancyProfile.

Optimal Parameters

Once you have computed the optimal set of parameters, it is possible to plot these results in the form of a
heat map using plotOptimalHeatMaps. Depending on what you are interested in, this function will either
plot correlation ,MSE, theta or all of the previous. This functions requires minimal input as described below:

plotOptimalHeatMaps (optimalParam=optimalParam ,
parameter="all", Contour=TRUE)

Input Data & Plotting

plotOptimalHeatMaps only requires one data input in the form of the result of computeOptimal (see
computeOptimal). The parameter argument defines which of the following parameters you wish to plot:
correlation ,MSE, theta or all of the previous. Finally, Contour defines if you which to plot Contour lines on
your heat map. As an example:

plotOptimalHeatMaps (optimalParam, parameter="all")

See plot in Quick Guide

The boxed tile represents the highest correlation or theta for a given combination of ScalingFactorPWM and
boundMolecules. In the case of MSE the boxed tile represents the lowest Mean Squared Error.

34

Plotting Profiles

ChIPAnalyser produces ChIP-seq like profiles. It is possible to plot these profiles but also to add a variety of
features to these plots. plotOccupancyProfile takes care of plotting with the following arguments:

plotOccupancyProfile <- function(predictedProfile,
setSequence,
profileAccuracy = NULL,
chipProfile = NULL,
occupancy = NULL,
PWM=FALSE,
DNAAccessibility = NULL,
occupancyProfileParameters = NULL,
geneRef = NULL)

Input Data & Profiles

In order to increase plotting flexibility, plotOccupancyProfile only plots one profile at a time. In practice,
this means that only simple data units should be parsed to this functions. This also means that the main
title is left to the user discretion. The arguments described above should come in the following format:

e precitedProfile, a GRanges object containing the predicted ChIP-seq like profile for one locus and
one combination of lambda and boundMolecules

e setSequence, a GRanges object containing the locus of interest.

e profileAccuracy, the profile Accuracy estimate for one loci and for one combination of lambda and
boundMolecules

e chipProfile, a vector containing ChIP-seq data for locus of interest. In previous functions, ChIP-seq
data was stored in a named list. In this case, it is the individual numeric vector contained within that
list.

e occupancy, a GRanges object containing both PWMScore and Occupancy. This GRanges is the result
of computeOccupancy and should only contain a GRanges object for one locus and one combination of
lambda and boundMolecules.

e PWM, a logical operator indicating wherever you wish to plot occupancy or PWMScores. 1t is necessary
to also include occupancy data.

e DNAAccessibility, a GRanges object containing DNA Accessibility. DNA Accessibility is similar to
DNA Accessibility data described previously.

e occupancyProfileParameters, an occupancyProfileParameters object. This object should be the
same as the one used in functions described above. However, the minimal requirement is that the
stepSize slot remains consistent with stepSize used previously. As a reminder, stepSize default value
is set at 10.

o geneRef, a List containing genetic information (3’UTR, 5’'UTR, exons, intron and enhancers). Each
element of this list, is a GRanges containing the information regarding 3’UTR, 5’UTR, exons, intron
and enhancers.

As this object has not yet be described, geneRef should come in a similar format as the following:

geneRef

$exon

GRanges object with 26713 ranges and O metadata columns:
segnames ranges strand

<Rle> <IRanges> <Rle>

CG17683 chr2R [18442, 18629] +

CG17683 chr2R [18681, 18773] +

CG17683 chr2R [18827, 19484] +

35

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

CG17683
CG17683
CG33680
CG30428
CG30428

CG30428
CG30428

seqinfo:

$intron

GRanges object with 22058 ranges and O metadata columns:

CG17683
CG17683
CG17683
CG17683
CG17683
CG33680
CG33680
CG30428

CG30428
CG30428

seqinfo:

$°5UTR"

GRanges object with 6029 ranges and O metadata columns:

CG17683
CG17683
CG17683
CG17683
CG17683
CG9380
CG9380
Kr

CG30429
CG30428

seqinfo:

$°3UTR"

GRanges object with 4556 ranges and O metadata columns:

CG17683
CG17683
CG17683

chr2R
chr2R
chr2R
chr2R
chr2R

chr2R
chr2R

14 sequences from an unspecified genome; no seqlengths

segnames
<Rle>
chr2R
chr2R
chr2R
chr2R
chr2R
chr2R
chr2R
chr2R
chr2R
chr2R

13 sequences from an unspecified genome; no seqlengths

seqnames
<Rle>
chr2R
chr2R
chr2R
chr2R
chr2R
chr2R
chr2R
chr2R
chr2R
chr2R

13 sequences from an unspecified genome; no seqlengths

segnames
<Rle>
chr2R
chr2R
chr2R

[19542, 20468]
[18442, 18629]

[21137781, 21137839]
[21140837, 21140963]
[21141104, 21141284]
[21141343, 21141601]
[21141651, 21142371]

+

+ 4+ 4+ +

ranges strand
<Rle>

<IRanges>
[18630, 18680]
[18774, 18826]
(19485, 19541]
[18630, 18692]
[18774, 18826]

[21137114, 21137174]
[21137423, 21137780]
[21140964, 21141103]
[21141285, 21141342]
[21141602, 21141650]

+

+ + 4+ +

+ + +

ranges strand
<Rle>

<IRanges>
[18442, 18566]
[18442, 18566]
[18487, 18629]
[18681, 18811]
[18498, 18773]

[21076340, 21076360]
[21076340, 21076360]
(21114138, 21114474]
[21133990, 21134051]
(21140837, 21140961]

+

+ + + +

+ 4+ +

ranges strand
<Rle>

<IRanges>
[20162, 20468]
[20162, 20468]
[20162, 20468]

36

+
+
+

CG17683 chr2R [20162, 20468] +

CG17683 chr2R [20162, 20468] +
C . e

CG9380 chr2R [21072649, 21072809] -
Kr chr2R [21116357, 21117057] +
CG30429 chr2R [21135028, 21135109] +
CG33680 chr2R [21136529, 21136529] -
CG30428 chr2R [21142001, 21142371] +

##H o -
seqinfo: 13 sequences from an unspecified genome; no seqlengths

It should be noted that only two arguments are necessary (predictedProfile and setSequence). The more
arguments are provided the more information will be plotted. As an example:

plotOccupancyProfile(predictedProfile=chipProfile[[1]] [[1]],
setSequence=evelocus,
profileAccuracy = AccuracyEstimate[[1]][[1]],
chipProfile = eveLocusChip[[1]],
occupancy = AllSitesAboveThreshold(Occupancy) [[1]1][[1]],
DNAAccessibility = Access,
occupancyProfileParameters = OPP,
geneRef =geneRef)

Session Information

sessionInfo()

R version 3.4.2 (2017-09-28)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 16.04.3 LTS

##

Matrix products: default

BLAS: /home/biocbuild/bbs-3.6-bioc/R/1ib/1libRblas.so

LAPACK: /home/biocbuild/bbs-3.6-bioc/R/lib/libRlapack.so

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base

##

other attached packages:

[1] BSgenome.Dmelanogaster.UCSC.dm3_1.4.0
[2] ChIPanalyser_1.0.0

[3] RcppRoll_0.2.2

[4] BSgenome_1.46.0

[5] rtracklayer_1.38.0

37

[6] Biostrings_2.46.0

[7] XVector_0.18.0

[8] GenomicRanges_1.30.0
[9] GenomeInfoDb_1.14.0
[10] IRanges_2.12.0

[11] S4Vectors_0.16.0

[12] BiocGenerics_0.24.0

##

loaded via a namespace (and not attached):

[1] Rcpp_0.12.13 knitr_1.17

[3] magrittr_1.5 GenomicAlignments_1.14.0
[5] zlibbioc_1.24.0 BiocParallel_1.12.0
[7] lattice_0.20-35 stringr_1.2.0

[9] tools_3.4.2 grid_3.4.2

[11] SummarizedExperiment_1.8.0 Biobase_2.38.0

[13] matrixStats_0.52.2 htmltools_0.3.6

[15] yaml_2.1.14 rprojroot_1.2

[17] digest_0.6.12 Matrix_1.2-11

[19] GenomeInfoDbData_0.99.1 bitops_1.0-6

[21] RCurl_1.95-4.8 evaluate_0.10.1

[23] rmarkdown_1.6 DelayedArray_0.4.0
[25] stringi_1.1.5 compiler_3.4.2

[27] Rsamtools_1.30.0 backports_1.1.1

[29] XML_3.98-1.9

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-wide binding
profiles. Nucleic Acids Res., 43, 84-94.

38

	Introduction
	Methods
	Work Flow - Quick start
	Example data Loading
	Quick Start
	Step 1 - Building Data objects
	Step 2 - Optimal Parameters
	Step 3 - Genome Wide Scoring
	Step 4 - PWM Scores Above Threshold
	Step 4 - compute Occupancy
	Step 5 - compute ChIP -seq like profiles
	Step 6 - Model Accuracy
	Step 7 - Plotting

	Work Flow - Full Guide
	Data objects - Genomic Profile Parameters
	Position Matricies - The compulsory ones
	Genomic Parameters - The optional ones
	Genomic Parameters - The Updated ones

	Data Objects - Occupancy Profile Parameters

	Work Flow - Analysis
	Genome Wide Scoring
	Input Data - Genome Wide scoring
	computeGenomeWidePWMScore

	Scoring sites above threshold
	Input Data - Sites Above threshold
	computePWMScore

	Occupancy
	Input Data - Occupancy
	computeOccupancy

	ChIP-seq like profiles
	Input data - ChIP-seq profiles
	computeChipProfile

	Searching through SitesAboveThreshold and ChIP-seq profiles
	Estimating the accuracy of the model
	Input data - Accuracy Estimate
	profileAccuracyEstimate

	Finding optimal Parameters
	Input Data - Optimal Parameters
	computeOptimal

	Plotting Results
	Optimal Parameters
	Input Data & Plotting

	Plotting Profiles
	Input Data & Profiles

	Session Information
	References

