Package ‘rebook’

March 30, 2021
Version 1.0.0
Date 2020-10-19
Title Re-using Content in Bioconductor Books

Description Provides utilities to re-use content across chapters of a Bioconductor
book. This is mostly based on functionality developed while writing the
OSCA book, but generalized for potential use in other large books with
heavy compute. Also contains some functions to assist book deployment.

Imports utils, methods, knitr, callr, rmarkdown, CodeDepends,
BiocStyle

Suggests testthat, igraph, BiocManager

License GPL-3

VignetteBuilder knitr

biocViews Software, Infrastructure, ReportWriting
RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/rebook
git_branch RELEASE_3_12

git_last_commit 93381c3

git_last_commit_date 2020-10-27
Date/Publication 2021-03-29

Author Aaron Lun [aut, cre, cph]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

R topics documented:

buildChapterGraph 2
chapterPreamble L 3
compileChapter e 4
createMakefile 5
deployCustomCSS e 6
extractCached 7
openingDetails 9
prettySessionInfo L. 10
scrapeDependencies oL 11
setupHTML e e 12
updateDependencieso e 12

2 buildChapterGraph

Index 15

buildChapterGraph Build the chapter dependency graph

Description

Build the dependency graph between chapter based on their extractCached calls to each other.

Usage
buildChapterGraph(dir, recursive = TRUE, pattern = "\\.Rmd$")

Arguments
dir String containing the path to the directory containing Rmarkdown reports. This
is searched recursively for all files ending in " .Rmd".
recursive Further arguments to pass to list.files when searching for Rmarkdown re-
ports.
pattern Further arguments to pass to list.files when searching for Rmarkdown re-
ports.
Value

A directed graph object from the igraph package, where each node is a chapter and is connected to
its dependencies by an edge.

Author(s)

Aaron Lun

Examples

dir <- tempfile()
dir.create(dir)

tmp1 <- file.path(dir, "alpha.Rmd")
write(file=tmp1, "***{r, echo=FALSE, results='asis'}
rebook: :chapterPreamble()

[NENEN

Sy

rodan <- 1

\\\n)

tmp2 <- file.path(dir, "bravo.Rmd")
write(file=tmp2, "***{r, echo=FALSE, results='asis'}
rebook: :chapterPreamble()

[NENEN

Sy
extractCached('alpha.Rmd")
saamy

chapterPreamble 3

Building the chapter graph:
g <- buildChapterGraph(dir)
plot(g)

chapterPreamble Execute chapter preamble code

Description

Execute code to set up the compilation environment at the start of every chapter.

Usage

chapterPreamble(cache = TRUE)

Arguments

cache Logical indicating whether to cache code chunks.

Details
Compilation is performed with no tolerance for errors, no printing of package start-up messages,
and no printing of warnings.
Numbers are printed to 4 digits of precision.

The BiocStyle package is automatically attached, primarily for use of Biocpkg and similar func-
tions.

HTML elements are defined using setupHTML.

Value

HTML is printed to standard output, see setupHTML.

Author(s)

Aaron Lun

Examples

tmp <- tempfile(fileext=".Rmd")
write(file=tmp, "*‘*{r, echo=FALSE, results='asis'}
rebook: :chapterPreamble()

[NENEN

Sy
pi # four digits!

[NENEN

Sy

warning('ASDASD') # warnings and messages are not saved in the HTML.

[NENEN

4 compileChapter

**Y{r, results='asis'}
prettySessionInfo()

\\\n)

rmarkdown: : render (tmp)

if (interactive()) browseURL(sub(”.Rmd$", ".html"”, tmp))
compileChapter Compile a Rmarkdown file
Description

Compile a Rmarkdown file - typically a chapter of a book - so that extractCached calls work
correctly in other chapters.

Usage

compileChapter(path, cache = TRUE)

Arguments

path String containing a path to an Rmarkdown file.

cache Logical scalar indicating whether the compilation should be cached.
Details

Compilation is performed in an isolated session using r from the callr package. This ensures that
settings from one chapter do not affect the next chapter.

If an error is encountered during compilation of any Rmarkdown file, the standard output of render
leading up to the error is printed out before the function exists.

Value

The specified file is (re)compiled to generate the corresponding *_cache directories. NULL is invis-
ibly returned.

Author(s)

Aaron Lun

See Also

extractCached, which calls this function.

createMakefile 5

Examples

tmp <- tempfile(fileext=".Rmd")
write(file=tmp, "*‘‘{r, echo=FALSE, results='asis'}
rebook: :chapterPreamble()

[NENEN

Ny
rodan <- 1

\\\ll)

compileChapter (tmp)

file.exists(sub(".Rmd$", ".html", tmp)) # output HTML exists.
file.exists(sub(”.Rmd$"”, "_cache”, tmp)) # output cache exists.

exists("rodan") # FALSE

createMakefile Create a compilation Makefile

Description

Create a Makefile for compiling individual chapters, in a manner that respects the dependencies
between chapters.

Usage
createMakefile(dir = ".", pattern = "\\.Rmd$", ..., fname = "Makefile")
Arguments
dir String containing the path to the directory containing Rmarkdown reports. This
is searched recursively for all files ending in " .Rmd".
pattern Further arguments to pass to list.files when searching for Rmarkdown re-
ports.
Further arguments to pass to buildChapterGraph.
fname String containing the name of the output Makefile.
Details

The main benefit of using a Makefile is that the generation of the chapter caches can be done in
parallel. Then, the bookdown step can just serially retrieve the cache contents for rapid rendering.

The Makefile uses the markdown output file as an indicator of successful knitting of a chapter.
Caches are left in the current working directory after the compilation of each report. It is assumed
that bookdown’s render_book is smart enough to find and use these caches.

Value

A Makefile is created in dir with the name fname and a NULL is invisibly returned.

Author(s)

Aaron Lun

6 deployCustomCSS

See Also

buildChapterGraph, to detect dependencies between chapters.

Examples

dir <- tempfile()
dir.create(dir)

tmpl <- file.path(dir, "alpha.Rmd")
write(file=tmp1, "***{r, echo=FALSE, results='asis'}
rebook: : chapterPreamble()

[NENEN

Sy

rodan <- 1

\\\u)

tmp2 <- file.path(dir, "bravo.Rmd")
write(file=tmp2, "***{r, echo=FALSE, results='asis'}
rebook: : chapterPreamble()

[NENEN

Ny
extractCached('alpha.Rmd')
saamy

Creating the Makefile:
createMakefile(dir)
cat(readlLines(file.path(dir, "Makefile"”)), sep="\n")

deployCustomCSS Deploy a custom CSS

Description

Deploy a custom CSS to change the colors of the book’s section headers, mostly to add some flavor
to the book.

Usage

deployCustomCSS(path = "style.css”, h2.col = "#87b13f", h3.col = "#1a81c2")

Arguments
path String containing the path to the output CSS file.
h2.col String containing the color to use for the section headers.

h3.col String containing the color to use for the subsection headers.

extractCached 7

Details

We quickly learned that it was unwise to be too adventurous with the colors. In particular, changing
the colors of the table of contents was quite distracting. Altering the colors of the section headers
provides a tasteful level of customization, with the default colors set (almost) to the Bioconductor
color palette.

Value

The CSS file is overwritten at path. A NULL is invisibly returned.

Author(s)

Aaron Lun, based on work by Rob Amezquita and Kevin Rue-Albrecht

Examples

fname <- tempfile(fileext=".css")
deployCustomCSS(fname)
cat(readLines(fname), sep="\n")

extractCached Extract cached objects

Description

Extract specific R objects from the knitr cache of a previously compiled Rmarkdown file (the
“donor”) so that it can be used in the compilation process of another Rmarkdown file (the “ac-
ceptor”).

Usage

extractCached(path, chunk, objects, envir = topenv(parent.frame()))

Arguments
path String containing the path to the donor Rmarkdown file.
chunk String containing the name of the requested chunk.
objects Character vector containing variable names for one or more objects to be ex-
tracted.
envir Environment where the loaded objects should be stored.
Details

Each R object is extracted in its state at the requested chunk and inserted into envir. Note that the
object does not have to be generated or even referenced in chunk, provided it was generated in a
previous chunk.

The parser in this function is rather limited, so the donor Rmarkdown file is subject to several
constraints:

8 extractCached

* All chunks involved in generating the requested objects (indirectly or otherwise) should be
named.

* All named chunks should be executed; eval=FALSE is not respected.

 All relevant code occurs within triple backticks, i.e., any inline code should be read-only.

Unnamed chunks are allowed but cannot be referenced and will not be shown in the output of this
function. This should not be used for code that might affect variables in the named chunks, i.e.,
code in unnamed chunks should be “read-only” with respect to variables in the named chunks.
Chunks with names starting with unref- are considered to be the same as unnamed chunks and
will be ignored; this is useful for figure-generating chunks that need to be referenced inside the
donor report.

Obviously, this entire process assumes that donor report has already been compiled with cache=TRUE.
If not, extractCached will compile it (and thus generate the cache) using compileChapter.

Value

Variables with names objects are created in envir. A markdown chunk (wrapped in a collapsible
element) is printed that contains all commands needed to generate those objects, based on the code
in the named chunks of the donor Rmarkdown file.

Author(s)

Aaron Lun

See Also

setupHTML and chapterPreamble, to set up the code for the collapsible element.

compileChapter, to compile a Rmarkdown report to generate the cache.

Examples

Mocking up an Rmarkdown report.

donor <- tempfile(fileext=".Rmd")
write(file=donor, "**“{r some-monsters}
destoroyah <- 1

mecha.king.ghidorah <- 2

[NENEN

[NENEN

{r more-monsters}
space.godzilla <- 3

[NENEN

\\\{r}

msg <- 'I am not referenced.'

[NENEN

[NENEN

{r unref-figure}
plot(1, 1, main="'I am also not referenced."')

[NENEN

[NENEN

{r even-more-monsters}
megalon <- 4

\\\n)

openingDetails 9

Extracting stuff from it in another report.

acceptor <- tempfile(fileext=".Rmd")

dpb <- deparse(basename(donor))

write(file=acceptor, sprintf(”***{r, echo=FALSE, results='asis'}
chapterPreamble()

[NENEN

“Y{r, results='asis', echo=FALSE}
extractCached(%s, chunk='more-monsters',
objects=c('space.godzilla', 'destoroyah'))

[NENEN

)

space.godzilla * destoroyah

[NENEN

““Y{r, results='asis', echo=FALSE}
extractCached(%s, chunk='even-more-monsters',
objects=c('megalon', 'mecha.king.ghidorah'))

[NENEN

S ry
mecha.king.ghidorah * megalon
TT, dpb, dpb))

rmarkdown: : render (acceptor)

if (interactive()) browseURL(sub(”.Rmd$"”, ".html", acceptor))
openingDetails Report opening details about the book
Description

Report opening details about the book, to be executed as an R expression in the Date: field.

Usage

openingDetails(...)

Arguments

Further named strings to be included in the opening details.

Details

It is usually sufficient to set something like
date: "‘r rebook::openingDetails()‘"

in the YAML header of the book, thereby ensuring that the book details are printed after the title but
before any contents. This assumes that none of the details have problematic characters, particularly
double quotes.

Details are extracted from a DESCRIPTION file in the current or any parent directory. This assumes
that authors are formatted as AuthorseR and the License and Date fields are specified.

10 prettySessionInfo

Value

A string containing the formatted details for inclusion into a YAML header.

Author(s)

Aaron Lun

Examples

wd <- getwd()

setwd(file.path(R.home(), 'library', 'rebook'))
cat(openingDetails(), '\n')

setwd(wd)

prettySessionInfo Pretty session info

Description
Wraps the session information output chunk in a collapsible HTML element so that it doesn’t dom-
inate the compiled chapter.

Usage

prettySessionInfo()

Value

Prints a HTML block containing a collapsible section with session information.

Author(s)

Aaron Lun

See Also

setupHTML and chapterPreamble, to set up the code for the collapsible element.

Examples

tmp <- tempfile(fileext=".Rmd")
write(file=tmp, "**‘{r, echo=FALSE, results='asis'}
rebook: : setupHTML ()

[NENEN

“Y{r, results='asis'}
prettySessionInfo()
AYANAY II)

rmarkdown: : render (tmp)

if (interactive()) browseURL(sub(”.Rmd$", ".html"”, tmp))

scrapeDependencies 11

scrapeDependencies Scrape dependencies

Description

Scrape Rmarkdown reports in the book for all required dependencies.

Usage
scrapeDependencies(dir, recursive = TRUE, pattern = "\\.Rmd$")
Arguments
dir String containing the path to the directory containing Rmarkdown reports. This

is searched recursively for all files ending in " .Rmd".
recursive, pattern

Further arguments to pass to list.files when searching for Rmarkdown re-
ports.

Details

The output of this should be added to the Suggests field of the book’s DESCRIPTION, to make it
easier to simply install all of its required dependencies.

Note that dependencies in inline code sections are not detected, so these should be explicitly men-
tioned in a standalone code chunk to be captured.

Value

Character vector of required packages.

Author(s)

Aaron Lun

Examples

tmp <- tempfile(fileext=".Rmd")
write(file=tmp, "**‘{r}
A::a(Q)

[NENEN

AN \{r}
library(B)
require(C)

\\\n)

scrapeDependencies(tempdir())

12 updateDependencies

setupHTML Set up HTML elements

Description

Set up Javascript and CSS elements for each chapter, primarily for the custom collapsible class.

Usage
setupHTML ()

Details

The custom collapsible class allows us to hide details until requested by the user. This improves
readability by reducing the clutter in the compiled chapter.

Value

Prints HTML to standard output set up JS and CSS elements.

Author(s)

Aaron Lun

See Also

chapterPreamble, which calls this function.

extractCached and prettySessionInfo, which use the custom collapsible class.

Examples

setupHTML ()

updateDependencies Update the dependencies

Description

Update the book’s DESCRIPTION file with the latest dependencies.

Usage
updateDependencies(
dir = ".",
extra = NULL,
indent = 4,

field = "Suggests”,

updateDependencies

Arguments

dir

extra

indent
field

Details

13

String containing the path to the directory containing the book DESCRIPTION
file.

Character vector of extra packages to be added to imports, usually from pack-
ages that are in Suggests and thus not caught directly by scrapeDependencies.

Integer scalar specifying the size of the indent to use when listing packages.

String specifying the dependency field to store the packages in. Defaults to
"Suggests” by convention.

Further arguments to pass to scrapeDependencies.

The book DESCRIPTION is useful for quick installation of all packages required across all chapters.
For example, it is used by https://github.com/LTLA/TrojanBookBuilder to populate a trojan
package’s dependencies, ensuring that all packages are available when the book itself is compiled.

Value

The specified field in the DESCRIPTION file in dir is updated. NULL is invisibly returned.

Author(s)

Aaron Lun

Examples

dir <- tempfile()
dir.create(dir)

write(file=file.path(dir, "DESCRIPTION"),
"Package: son.of.godzilla

Version: 0.0.1

Description: Like godzilla, but smaller.")

tmp <- file.path(dir, "alpha.Rmd")
write(file=tmp, "**“{r, echo=FALSE, results='asis'}
rebook: :chapterPreamble()

[NENEN

\\\{r}
A::func
library(C)

\\\n)

tmp <- file.path(dir, "bravo.Rmd")
write(file=tmp, "*‘‘{r, echo=FALSE, results='asis'}
rebook: :chapterPreamble()

[NENEN

Ny
require(D)
B: :more

\\\n)

https://github.com/LTLA/TrojanBookBuilder

14

updateDependencies(dir)
cat(readlLines(file.path(dir, "DESCRIPTION")), sep="\n")

updateDependencies

Index

Biocpkg, 3
buildChapterGraph, 2, 5, 6

chapterPreamble, 3, 8, 10, 12
compileChapter, 4, 8
createMakefile, 5
deployCustomCSS, 6
extractCached, 2,4,7, 12
graph, 2

knit, 5

list.files, 2,5, 11
openingDetails, 9
prettySessionInfo, 10, /2

r,4
render, 4

scrapeDependencies, 11, 13
setupHTML, 3, 8, 10, 12

updateDependencies, 12

15

	buildChapterGraph
	chapterPreamble
	compileChapter
	createMakefile
	deployCustomCSS
	extractCached
	openingDetails
	prettySessionInfo
	scrapeDependencies
	setupHTML
	updateDependencies
	Index

