Package 'GateFinder'

March 30, 2021
Type Package
Title Projection-based Gating Strategy Optimization for Flow and Mass Cytometry
Version 1.10.0
Date 2018-03-28
Author Nima Aghaeepour naghaeep@gmail.com, Erin F. Simonds erin.simonds@gmail.com
Maintainer Nima Aghaeepour naghaeep@gmail.com
Requires alphahull, maptools
Imports splancs, mvoutlier, methods, stats, diptest, flowCore, flowFP
Suggests RUnit, BiocGenerics
Description Given a vector of cluster memberships for a cell population, identifies a se-quence of gates (polygon filters on 2D scatter plots) for isolation of that cell type.
License Artistic-2.0
biocViews ImmunoOncology, FlowCytometry, CellBiology, Clustering
NeedsCompilation no
git_url https://git.bioconductor.org/packages/GateFinder
git_branch RELEASE_3_12
git_last_commit c870840
git_last_commit_date 2020-10-27
Date/Publication 2021-03-29
R topics documented:
GateFinder-package 2
GateFinder 3
GatingProjection-class 5
LPSData 6
plot.GateFinder 7
Index 9

GateFinder-package GateFinder

Description

Given a vector of cluster memberships for a cell population, identifies a sequence of gates (polygon filters on 2D scatter plots) for isolation of that cell type.

Details

Package:	GateFinder
Type:	Package
Version:	1.0
Date:	$2013-12-21$
License:	Artistic-2.0

$\sim \sim$ An overview of how to use the package, including the most important $\sim \sim \sim \sim$ functions $\sim \sim$

Author(s)

Nima Aghaeepour naghaeep@gmail.com and Erin F. Simonds <erin.simonds@ gmail.com>

Examples

```
library(flowCore)
data(LPSData)
##Select the target population. In this case cells with those with a pP38 expression (dimension 34) of higher th
targetpop <- (exprs(rawdata)[,34]>3.5)
##Subset the markers that should be considered for gating.
x=exprs(rawdata)[,prop.markers]
colnames(x)=marker.names[prop.markers]
##Run GateFinder.
ans=GateFinder(x, targetpop)
##Make the plots.
plot (x, ans, c(2,3), targetpop)
plot(ans)
```

\#\#Alternatively, using a flowFrame:
$x=n e w(' f l o w F r a m e ', ~ e x p r s=x)$
ans=GateFinder(x, targetpop)
\#\#Now you can use the gates and filters to subset the flowFrame. E.g.:
split(x, ans@flowEnv\$Filter2)
\#\#This function relies on an EXPERIMENTAL feature in flowUtils. Please be cautious when replying on this. \#\#Don't run without the optional flowUtils package installed. \#\#To write the gates into a GatingML file:
\#\#library(flowUtils)
\#\#write.gatingML(ans@flowEnv, 'GatingML.xml')

GateFinder GateFinder

Description

Given a vector of cluster memberships for a cell population, identifies a sequence of gates (polygon filters on 2D scatter plots) for isolation of that cell type.

Usage

GateFinder(x, targetpop, update.gates=FALSE, max.iter=2, beta=1, outlier.percentile=0.05, subsampl

Arguments

$x \quad$ A flowFrame or an expression matrix in which columns are markers and rows are cells
targetpop A vector of logical values one for each cell (TRUE $=$ cells in the target population). If instead a vector of integers are supplied each integer value will be treated as a separate celltype of interest and a list of gating strategies will be returned.
update.gates A boolean value indicating if the polygon gates should be updated after each gating step. update.gates=TRUE makes the analysis slower.
max.iter The number of requested gating steps.
beta A positive real value which control the trade-off between precision and recall in the F-measure calculation. Values smaller than 1 (and closer to 0) emphasize recall values and values larger than 1 emphasize precision.
outlier.percentile
The percentile of the empirical distribution of each 2d distribution (each scatter plot) that should be excluded before calculating the polygon gate. If a vector, all provided numbers will be tested and the one with the highest F-measure will be used.
subsample The number of cells (integer) that should be randomly selected for calculation of the gating strategy (the gating strategy can be applied to all cells therefore the resulting populations will be based on all cells (see update.org.data)).
nstart The number of randomized runs (integer). The results from the best (or median) randomized run will be used. See selection.criteria).
update.org.data
A boolean controling weather the gating strategy calculated using a random subset of the cells should be applied to all cells or not.
randomize A boolean value to control if selection of the gates should be randomized. If TRUE the selection probability of each gate will be proportional to it's fmeasure. Otherwise the best gate will be selected for each step.
selection.criteria
A string with values of either 'best' or 'median'. This determines if the run with the best or median fmeasure should be used as the final gating strategy.
unimodalitytest
A boolean value. If TRUE the unimodality of the first principal component will be tested using a dip test and a warning is issued for $\mathrm{p}<0.05$
predimx A vector of marker numbers for the x-axes of a pre-determined gating strategy.
predimy A vector of marker numbers for the y-axes of a pre-determined gating strategy.
convex A boolean value indicating if the target population is expected to be convex (for outlier removal purposes).
alpha alpha-hull threshold for non-convex gates.

Value
 GatingProjection

A GatingProjection object

Author(s)

Nima Aghaeepour naghaeep@gmail.com and Erin F. Simonds erin.simonds@gmail.com.

References

Filzmoser, Peter, Ricardo Maronna, and Mark Werner. "Outlier identification in high dimensions." Computational Statistics \& Data Analysis 52, no. 3 (2008): 1694-1711.

Examples

```
library(flowCore)
data(LPSData)
##Select the target population. In this case cells with those with a pP38 expression (dimension 34) of higher th
targetpop <- (exprs(rawdata)[,34]>3.5)
##Subset the markers that should be considered for gating.
x=exprs(rawdata)[,prop.markers]
colnames(x)=marker.names[prop.markers]
##Run GateFinder.
ans=GateFinder(x, targetpop)
##Make the plots.
plot (x, ans, c(2,3), targetpop)
plot(ans)
```

\#\#Alternatively, using a flowFrame:
x=new('flowFrame', exprs=x)
ans=GateFinder(x, targetpop)
\#\#Now you can use the gates and filters to subset the flowFrame. E.g.:
split(x, ans@flowEnv\$Filter2)
\#\#This function relies on an EXPERIMENTAL feature in flowUtils. Please be cautious when replying on this. \#\#Don't run without the optional flowUtils package installed. \#\#To write the gates into a GatingML file: \#\#library(flowUtils)

```
##write.gatingML(ans@flowEnv, 'GatingML.xml')
```

```
GatingProjection-class
```

Class "GatingProjection"

Description

An object that stores the final gating projections as well as the scores calculated for each step.

Objects from the Class

Objects can be created by calls of the form new("GatingProjection", ...).

Slots

fmeasure: A vector of F-measure values for each step of the identified gating strategy.
precision: A vector of precision values for each step of the identified gating strategy.
recall: A vector of recall values for each step of the identified gating strategy.
dimx: A vector of marker indexes for the x -axis of each step of the identified gating hierarchy.
dimy: A vector of marker indexes for the y-axis of each step of the identified gating hierarchy.
gates: A list of polygon gates for each step of the identified gating hierarchy.
pops: A list of vectors representing the cell population memberships for each step of the identified hierarchy.
subsampleindex: A vector of the indexes of the selected subsample of cells (if applicable).
fmeasures: A vector of F-measure values of multiple randomized attempts (if applicable).
flowEnv: An envirnoment for flowCore's polygon gates and intersect filters.

Methods

plot signature($\mathrm{x}=$ "GatingProjection", $\mathrm{y}=$ = "ANY"): Plot of F-measure, precision, and recall values of each gating step.
plot signature ($\mathrm{x}=$ "matrix", $\mathrm{y}=$ "GatingProjection"): Scatter plots of the raw data (from matrix x) for each step of the gating strategy. Gray dots represent cells that were removed in the previous step. Red dots represent the target cells.

Author(s)

Nima Aghaeepour naghaeep@gmail.com and Erin F. Simonds erin.simonds@gmail.com.

Examples

```
library(flowCore)
data(LPSData)
##Select the target population. In this case cells with those with a pP38 expression (dimension 34) of higher th
targetpop <- (exprs(rawdata)[,34]>3.5)
##Subset the markers that should be considered for gating.
x=exprs(rawdata)[,prop.markers]
colnames(x)=marker.names[prop.markers]
##Run GateFinder.
ans=GateFinder(x, targetpop)
##Make the plots.
plot (x, ans, c(2,3), targetpop)
plot(ans)
```

\#\#Alternatively, using a flowFrame:
x=new('flowFrame', exprs=x)
ans=GateFinder(x, targetpop)
\#\#Now you can use the gates and filters to subset the flowFrame. E.g.:
split(x, ans@flowEnv\$Filter2)
\#\#This function relies on an EXPERIMENTAL feature in flowUtils. Please be cautious when replying on this.
\#\#Don't run without the optional flowUtils package installed.
\#\#To write the gates into a GatingML file:
\#\#library(flowUtils)
\#\#write.gatingML(ans@flowEnv, 'GatingML.xml')

```
LPSData LPSData
```


Description

A dataset of two sets of scores (particularly, correlation with protection against HIV and overlap with the Naive T-cell population) assigned to immunophenotypes measured by flow cytometry. 10 markers were measured: KI-67, CD28, CD45RO, CD8, CD4, CD57, CCR5, CD27, CCR7, and CD127.

Usage

data(LPSData)

Details

This dataset consists of a matrix and two vectors:
rawdata The transformed expression values extracted from the original FCS file.
prop.markers the indexes of markers that should be considered for the gating strategy.
marker . names name of all markers (columns of matrix rawdata).

Author(s)

Nima Aghaeepour <<naghaeep@gmail. com>> and Erin F. Simonds <<erin. simonds@gmail .com>>.

References

Bendall, Sean C., et al. "Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum." Science 332.6030 (2011): 687-696.

Examples

```
library(flowCore)
data(LPSData)
plot(exprs(rawdata)[,15:16],xlab=marker.names[15],ylab=marker.names[16])
```

```
plot.GateFinder plot.GateFinder
```


Description

Creates a scatter plot for each of the gating steps.

Usage

\#\# S3 method for class 'GateFinder' plot (x, y, ncolrow=c(1,max(targetpop)), targetpop=NULL, beta=NULL, cexs=NULL, cols=NULL, subsampl

Arguments

$x \quad$ A flowFrame or an expression matrix in which columns are markers and rows are cells.
y
A GatingProjection object.
ncolrow
targetpop The target cell type
beta A positive real value which control the trade-off between precision and recall in the F-measure calculation. Values smaller than 1 (and closer to 0) emphasize recall values and values larger than 1 emphasize precision.
cexs A vector of length 3 indicating the point sizes for 1-previously excluded cells 2 -non-selected cells 3-selected cells.
cols A vector of length 3 indicating the point colors for 1-previously excluded cells 2 -non-selected cells 3 -selected cells.
subsample The number of randomized runs (integer). The results from the best (or median) randomized run will be used. See selection.criteria).
max.iter A boolean controling weather the gating strategy calculated using a random subset of the cells should be applied to all cells or not.
pot A boolean value. If true, the points of interest will be ploted on top of other points to increase visibility.
$x \lim \quad$ Static x-axis limits for the plots (vector of length 2).
ylim Static y-axis limits for the plots (vector of length 2).
asinh.axis A boolean value indicating if asinh axis ticks should be plotted (usually used for mass cytometry data).
... Other arguments passed to the plot function.

Value

Plot A GateFinder plot.

Author(s)

Nima Aghaeepour naghaeep@gmail.com and Erin F. Simonds erin.simonds@gmail.com.

Examples

```
library(flowCore)
data(LPSData)
##Select the target population. In this case cells with those with a pP38 expression (dimension 34) of higher th
targetpop <- (exprs(rawdata)[,34]>3.5)
##Subset the markers that should be considered for gating.
x=exprs(rawdata)[,prop.markers]
colnames(x)=marker.names[prop.markers]
##Run GateFinder.
ans=GateFinder(x, targetpop)
##Make the plots.
plot(x, ans, c(2,3), targetpop)
plot(ans)
##Alternatively, using a flowFrame:
x=new('flowFrame', exprs=x)
ans=GateFinder(x, targetpop)
##Now you can use the gates and filters to subset the flowFrame. E.g.:
split(x, ans@flowEnv$Filter2)
##This function relies on an EXPERIMENTAL feature in flowUtils. Please be cautious when replying on this.
##Don't run without the optional flowUtils package installed.
##To write the gates into a GatingML file:
##library(flowUtils)
##write.gatingML(ans@flowEnv, 'GatingML.xml')
```


Index

```
GateFinder, 3
GateFinder-package, 2
GatingProjection
    (GatingProjection-class), 5
GatingProjection-class, 5
LPSData, }
marker.names (LPSData), }
plot,GatingProjection,ANY-method
    (GatingProjection-class),5
plot,matrix,GatingProjection-method
    (GatingProjection-class), 5
plot.GateFinder,7
prop.markers(LPSData),6
rawdata (LPSData), }
```

