
VariantFiltering: filtering of coding and non-coding genetic variants

Dei M. Elurbe 1,2 and Robert Castelo 3,4

January 26, 2015

1CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain

2Present address: CMBI, Radboud University Medical Centre, Nijmegen, The Netherlands.

2Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.

3Research Program on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute, Barcelona, Spain.

1 Overview

The aim of this software package is to facilitate the filtering and annotation of coding and non-coding genetic variants
from a group of related or unrelated individuals among which at least one of them is affected by a genetic disorder.
When working with related individuals, VariantFiltering can search for variants from the affected individuals that seg-
regate according to a particular inheritance model acting on autosomes (dominant, recessive homozygous or recessive
heterozygous -also known as compound heterozygous) or allosomes (X-linked), or that occur de novo. When working
with unrelated individuals, no mode of inheritance is used for filtering but it can be used to search for variants shared
among individuals affected by a common genetic disorder.

VariantFiltering exploits the R/Bioconductor infrastructure to annotate the sought variants with a number of functional
annotations. Many of these annotations come from annotation packages, such as MafDb.ALL.wgs.phase1.release.v3.20101123 ,
which stores and exposes to the user minimum allele frequency (MAF) values frozen from the latest realease of the 1000
Genomes project.

The main input are Variant Call Format (VCF) files which are parsed using the functionality from the VariantAnnotation
package for that purpose.

This package contains a toy data set for illustrative purposes only, consisting of a multisample VCF file with variants from
chromosomes 20, 21, 22 and allosomes from a trio of CEU individuals from the 1000 Genomes project. To further reduce
the execution time of this vignette, only the code for the first analysis that searches for autosomal recessive homozygous
variants is actually called and its results reported.

2 Using the package with parallel execution

Functions in VariantFiltering to annotate and filter variants leverage the functionality of the Bioconductor package
BiocParallel to perform in parallel some of the tasks and calculations and reduce the overall execution time. These
functions have an argument called BPPARAM that allows the user to control how this parallelism is exploited. In particular
the user must give as value to this argument the result from a call to the function bpparam(), which actually is its
default behavior. Here below we modify that behavior to force a call being executed without parallelism. The interested
reader should consult the help page of bpparam() and the vignette of the BiocParallel for further information.

1

http://bioconductor.org/packages/release/bioc/html/VariantFiltering.html
http://bioconductor.org/packages/release/bioc/html/VariantFiltering.html
http://bioconductor.org/packages/release/bioc/html/MafDb.ALL.wgs.phase1.release.v3.20101123.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/VariantFiltering.html
http://bioconductor.org/packages/release/bioc/html/BiocParallel.html
http://bioconductor.org/packages/release/bioc/html/BiocParallel.html


VariantFiltering: filtering of coding and non-coding genetic variants 2

3 Setting up the analysis

To start using VariantFiltering the user should consider installing the packages listed in the Suggests: field from its DE-
SCRIPTION file. After loading VariantFiltering the first step is to build a parameter object, of class VariantFilteringParam
which requires at least a character vector of VCF filenames, as follows:

> library(VariantFiltering)

> CEUvcf <- file.path(system.file("extdata", package="VariantFiltering"), "CEUtrio.vcf.bgz")

> CEUped <- file.path(system.file("extdata", package="VariantFiltering"), "CEUtrio.ped")

> param <- VariantFilteringParam(vcfFilenames=CEUvcf, pedFilename=CEUped)

> param

VariantFiltering parameter object

VCF file(s): CEUtrio.vcf.bgz

Genome version(s): b37(NCBI)

Number of individuals: 3 (NA12878, NA12891, NA12892)

PED file: CEUtrio.ped

Gene-centric annotation package: org.Hs.eg.db

Transcript-centric annotation package: TxDb.Hsapiens.UCSC.hg19.knownGene

SNP-centric annotation package: SNPlocs.Hsapiens.dbSNP.20120608 (dbSNP Build 137)

Radical/Conservative AA changes file: AA_chemical_properties_HanadaGojoboriLi2006.tsv

Other annotation pkg/obj: MafDb.ESP6500SI.V2.SSA137.dbSNP138,

MafDb.ALL.wgs.phase1.release.v3.20101123,

PolyPhen.Hsapiens.dbSNP131,

SIFT.Hsapiens.dbSNP137,

phastCons100way.UCSC.hg19,

humanGenesPhylostrata

All transcripts: FALSE

Filter tag: NA

In this case, we are also providing a PED file because the analysis illustrated below works on a trio filtering variants with
a particular inheritance model.

4 Autosomal recessive inheritance analysis: Homozygous

Homozygous variants responsible for a recessive trait in the affected individuals can be identified calling the autosoma-

lRecessiveHomozygous() function. This function takes a VariantFilteringParam object as main argument and selects
homozygous variants that are present in all the affected individuals and occur in heterozygosity in the unaffected ones.
We change the default value of the BPPARAM argument to the object returned by a call to bpparam("SerialParam") to
disable the parallel execution of this function when building this vignette. For this reason, we need to load the BiocParallel
package first and perform the call to the function as follows:

> library(BiocParallel)

> reHo <- autosomalRecessiveHomozygous(param, BPPARAM=bpparam("SerialParam"))

> reHo

VariantFiltering results object

Variants segregate according to a/an autosomal recessive homozygous inheritance model

Functional annotation filters

No filtering on presence in dbSNP Build 137

Variant type: Any

Amino acid change type: Any

http://bioconductor.org/packages/release/bioc/html/VariantFiltering.html
http://bioconductor.org/packages/release/bioc/html/VariantFiltering.html
http://bioconductor.org/packages/release/bioc/html/BiocParallel.html


VariantFiltering: filtering of coding and non-coding genetic variants 3

Populations used for MAF filtering: AFESP, EA_AFESP, AA_AFESP, AFKG, AMR_AFKG, ASN_AFKG, AFR_AFKG, EUR_AFKG

Include MAF NA values: yes

Maximum MAF: 1.00

No filtering on nucleotide conservation

No filtering on gene conservation

No filtering on cryptic 5'ss

No filtering on cryptic 3'ss

Total number of variants: 127

30 (23.6%) are coding non-synonymous

49 (38.6%) are coding synonymous

0 (0.0%) located in known splice sites

9 (7.1%) located in promoter regions

8 (6.3%) located in 5' UTR regions

10 (7.9%) located in 3' UTR regions

21 (16.5%) located in intronic regions

0 (0.0%) located in intergenic regions

The resulting object belongs to the VariantFilteringResults class of objects which eases the task of applying further
functional annotation filters to select and prioritize variants. The help page of the VariantFilteringResults class contains
a list of available accessor methods. Here we illustrate the use of a few of them:

> maxMAF(reHo) <- 0.05

> MAFmask <- MAFpop(reHo)

> MAFmask

AFESP EA_AFESP AA_AFESP AFKG AMR_AFKG ASN_AFKG

TRUE TRUE TRUE TRUE TRUE TRUE

AFR_AFKG EUR_AFKG

TRUE TRUE

> MAFpop(reHo) <- !MAFmask

> MAFpop(reHo, "ASN_AFKG") <- TRUE

> MAFpop(reHo)

AFESP EA_AFESP AA_AFESP AFKG AMR_AFKG ASN_AFKG

FALSE FALSE FALSE FALSE FALSE TRUE

AFR_AFKG EUR_AFKG

FALSE FALSE

> minCRYP5ss(reHo) <- 0

> reHo

VariantFiltering results object

Variants segregate according to a/an autosomal recessive homozygous inheritance model

Functional annotation filters

No filtering on presence in dbSNP Build 137

Variant type: Any

Amino acid change type: Any

Populations used for MAF filtering: ASN_AFKG

Include MAF NA values: yes

Maximum MAF: 0.05

No filtering on nucleotide conservation

No filtering on gene conservation

Minimum score for cryptic 5'ss: 0.00

No filtering on cryptic 3'ss



VariantFiltering: filtering of coding and non-coding genetic variants 4

Total number of variants: 1

0 (0.0%) are coding non-synonymous

1 (100.0%) are coding synonymous

0 (0.0%) located in known splice sites

0 (0.0%) located in promoter regions

0 (0.0%) located in 5' UTR regions

0 (0.0%) located in 3' UTR regions

0 (0.0%) located in intronic regions

0 (0.0%) located in intergenic regions

> filteredVariants(reHo)

GRanges object with 1 range and 40 metadata columns:

seqnames ranges strand | IDX

<Rle> <IRanges> <Rle> | <integer>

rs916425 chr22 [26388337, 26388337] + | 53

LOCATION LOCSTART TXID CDSID

<factor> <integer> <character> <integer>

rs916425 coding 6165 73793 214772

GENEID REF ALT

<character> <DNAStringSet> <DNAStringSetList>

rs916425 84700 C T

TYPE FILTER dbSNP cDNALOC

<factor> <character> <character> <integer>

rs916425 SNV . rs916425 6415

varAllele CDSLOC PROTEINLOC

<DNAStringSet> <IRanges> <IntegerList>

rs916425 T [6165, 6165] 2055

CONSEQUENCE REFCODON VARCODON

<factor> <DNAStringSet> <DNAStringSet>

rs916425 synonymous TAC TAT

REFAA VARAA CRYP5ssREF

<AAStringSet> <AAStringSet> <numeric>

rs916425 Y Y 1.45

CRYP5ssALT CRYP5ssPOS CRYP3ssREF CRYP3ssALT

<numeric> <numeric> <numeric> <numeric>

rs916425 1.52 4 -5.64 -5.32

CRYP3ssPOS GENE OMIM TXNAME

<numeric> <character> <character> <character>

rs916425 5 MYO18B 607295 uc003abz.1

CDS AAchange AAchangeType ASN_AFKG

<character> <character> <character> <numeric>

rs916425 C6165T Y2055Y Conservative 0.002

PolyPhen2 PROVEAN phastCons

<character> <character> <numeric>

rs916425 <NA> Neutral 0.1

GenePhylostratumTaxID GenePhylostratumIndex

<character> <integer>

rs916425 2759 2

GenePhylostratum maxMAF

<character> <numeric>

rs916425 Eukaryota 0.002

-------

seqinfo: 24 sequences from hg19 genome



VariantFiltering: filtering of coding and non-coding genetic variants 5

5 Autosomal recessive inheritance analysis: Heterozygous

To filter by this mode of inheritance, also known as compound heterozygous, we need two unaffected parents/ancestors
and at least one affected descendant. Variants are filtered in five steps: 1. select heterozygous variants in one of the
parents and homozygous in the other; 2. discard previously selected variants that are common between the two parents;
3. group variants by gene; 4. select those genes, and the variants that occur within them, which have two or more
variants and there is at least one from each parent; 5. from the previously selected variants, discard those that do not
occur in the affected descendants. This is implemented in the function autosomalRecessiveHeterozygous().

> compHet <- autosomalRecessiveHeterozygous(param)

6 Autosomal dominant inheritance analysis

The function autosomalDominant() identifies variants present in all the affected individual(s) discarding the ones that
also occur in at least one of the unaffected subjects.

> dom <- autosomalDominant(param)

7 X-Linked inheritance analysis

The function xLinked() identifies variants that appear only in the X chromosome of the unaffected females as heterozy-
gous, don’t appear in the unaffected males analyzed and finally are present (as homozygous) in the affected male(s).
This function is currently restricted to affected males, and therefore, it cannot search for X-linked segregating variants
affecting daughters.

> xlid <- xLinked(param)

8 De Novo variants analysis

The function deNovo() searches for de novo variants which are present in one descendant and present in both par-
ents/ancestors. It is currently restricted to a trio of individuals.

> deNovo <- deNovo(param)

9 Variants analysis for all possible inheritance models

Sometimes more than one mode of inheritance may be compatible with the phenotype of the individuals. To facilitate
exploring the different inheritance models we provide a function called allInheritanceModels() which does not filter
upfront for any mode of inheritance but it allows the user to switch among them by using the shiny app launched by
the function reportVariants(). As a consequence, the object returned by allInheritanceModels() will be have a
larger memory footprint. This analysis can be currently performed to a number of related individuals between one and
four with at least one of them being affected.

> aim <- allInheritanceModels(param)

> aim <- reportVariants(aim)



VariantFiltering: filtering of coding and non-coding genetic variants 6

10 Variants analysis on unrelated individuals

When the individuals to analyze are unrelated, and therefore, there is no mode of inheritance to use as a filter, we can
filter variants using the function unrelatedIndividuals(). Thus, the goal here will be to identify variants that are
responsible for a phenotype common to all the individuals.

Similarly to allInheritanceModels(), no variants are filtered out upfront, and therefore, the main memory requirements
may be larger.

> uind <- unrelatedIndividuals(param)

11 Create a report from the filtered variants

The function reportVariants() allows us to easily create a report from the filtered variants into a CSV or a TSV file
as follows:

> reportVariants(reHo, type="csv", file="reHo.csv")

However, the default value on the type argument ("shiny") starts a shiny web app which allows one to interactively
filter the variants, obtaining an udpated VariantFilteringResults object and downloading the filtered variants and the
corresponding full reproducible R code, if necessary.

This reportVariants() function is designed to provide for different options according to the exact type of VariantFilter-
ingResults object is dispatching. For example, for results objects resulting from the function allInheritanceModels(),
it will show a tab named ”Inheritance” where the user can allocate the individuals present in the VCF file according to
different inheritance models.

> aim <- reportVariants(aim)

The previous call should open a browser window with a web app similar to the one in Figure 1. The button ”Save &
Close” will close the web app and return the results object updated according to the filters switched on or off at the web
app.

12 Current limitations of the package

The package has a number of limitations and shortcomings which we will list here and update with feedback from users.
We will make our best to try to address these issues in forthcoming releases of the package:

� Only SNVs are identified to a particular version of dbSNP using a Bioconductor SNPlocs.* package.
� Multi-allelic variants, i.e., variants with more than one alternate allele, are not yet supported and can prompt errors.
� Filtering by the autosomal recessive heterozygous mode of inheritance is currently restricted to coding variants.
� The X-linked mode of inheritance is currently restricted to affected sons, and therefore, it cannot search for X-linked

segregating variants from affected daughters.
� The de novo mode of inheritance is currently restricted to a trio with two parents and one descendant.
� The function allInheritanceModels is currently restricted to a maximum of four individuals.
� The ”Generate Report”button from the shiny app does not provide the full reproducible code when using allInher-

itanceModels() function for the analysis.
� Scoring of splice sites is currently restricted to human and the whole package is currently pretty much human-

oriented.

13 Session information



VariantFiltering: filtering of coding and non-coding genetic variants 7

Figure 1: Snapshot of the shiny web app run from VariantFiltering with the function reportVariants(). Some of the
parameters has been filled for illustrative purposes.

> toLatex(sessionInfo())

� R version 3.1.2 (2014-10-31), x86_64-unknown-linux-gnu
� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils
� Other packages: AnnotationDbi 1.28.1, BSgenome 1.34.1, Biobase 2.26.0, BiocGenerics 0.12.1,

BiocParallel 1.0.1, Biostrings 2.34.1, DBI 0.3.1, GenomeInfoDb 1.2.4, GenomicFeatures 1.18.3,
GenomicRanges 1.18.4, IRanges 2.0.1, MafDb.ALL.wgs.phase1.release.v3.20101123 3.0.0,
MafDb.ESP6500SI.V2.SSA137.dbSNP138 3.0.0, PolyPhen.Hsapiens.dbSNP131 1.0.2, RSQLite 1.0.0,
Rsamtools 1.18.2, S4Vectors 0.4.0, SIFT.Hsapiens.dbSNP137 1.0.0, SNPlocs.Hsapiens.dbSNP.20120608 0.99.9,
TxDb.Hsapiens.UCSC.hg19.knownGene 3.0.0, VariantAnnotation 1.12.9, VariantFiltering 1.2.14, XVector 0.6.0,
org.Hs.eg.db 3.0.0, phastCons100way.UCSC.hg19 3.0.0, rtracklayer 1.26.2

� Loaded via a namespace (and not attached): BBmisc 1.8, BSgenome.Hsapiens.UCSC.hg19 1.4.0, BatchJobs 1.5,
BiocStyle 1.4.1, GenomicAlignments 1.2.1, R6 2.0.1, RCurl 1.95-4.5, RJSONIO 1.3-0, Rcpp 0.11.4,
XML 3.98-1.1, base64enc 0.1-2, biomaRt 2.22.0, bitops 1.0-6, brew 1.0-6, checkmate 1.5.1, codetools 0.2-10,
digest 0.6.8, fail 1.2, foreach 1.4.2, htmltools 0.2.6, httpuv 1.3.2, iterators 1.0.7, mime 0.2, sendmailR 1.2-1,
shiny 0.11, stringr 0.6.2, tools 3.1.2, xtable 1.7-4, zlibbioc 1.12.0


	1 Overview
	2 Using the package with parallel execution
	3 Setting up the analysis
	4 Autosomal recessive inheritance analysis: Homozygous
	5 Autosomal recessive inheritance analysis: Heterozygous
	6 Autosomal dominant inheritance analysis
	7 X-Linked inheritance analysis
	8 De Novo variants analysis
	9 Variants analysis for all possible inheritance models
	10 Variants analysis on unrelated individuals
	11 Create a report from the filtered variants
	12 Current limitations of the package
	13 Session information

