
NetCard — A Practical Electronic Cash System

Ross Anderson, Charalampos Manifavas and Chris Sutherland

Computer Laboratory, Pembroke Street, Cambridge CB2 3QG

1 Introduction

Over the last ten years or so, there have been a number of proposals for electronic
cash systems, which let a customer make a payment to a merchant over a com-
puter network by sending messages called ‘digital coins’ which the merchant can
redeem for value (see, e.g. [Cha] [CAFE]). These coins may be managed using a
tamper resistant ‘electronic wallet’: such systems have already been introduced
in a number of countries to meet specific local requirements [And1].

Recently, a likely international standard has emerged from VISA and Mas-
terCard; their Secure Electronic Transaction [SET] protocol will facilitate credit
card transactions on the Internet. However, an electronic credit card system,
such as SET, will suffer from relatively high transaction costs. Not only is the
system overlaid on the existing credit card legacy infrastructure, but it will also
function in the same commercial framework. Banks worldwide have developed
an intricate system of contractual relationships that determine how much money
will be paid for processing each transaction, and these costs are geared to trans-
actions in the tens to hundreds of dollars. Thus although SET will be economic
for payments in this range, it will be less so for the smaller payments needed
for many network services. The digital analogues of stamps and phone tokens —
‘micropayments’ — will need different treatment, and we discuss some options
here.

The application that first motivated us was electronic publishing. When we
wish to read an article from a journal that is not in the local libraries, we
currently have to buy an annual subscription. This is usually so expensive that
we explore alternatives, such as writing to the author for a preprint. It would
probably be much better for all concerned if we could just buy the pages of
interest. So we set out to provide a mechanism whereby journals could be sold
electronically, with a page charge as an alternative to an annual subscription.

Other examples are video-on-demand, other fast network services, computer
facilities, road tolls and utility meters [AB]. In all of these applications, a cus-
tomer makes a series of small payments to the same vendor.

As time passes, more complex applications will emerge. For example, we may
wish to rent a video from a shop in Los Angeles to watch in Cambridge. This
could involve simultaneous payments to the video store for the content, and to
a network service provider to pay for the bandwidth. However the principle is
the same; we are still making a series of low value payments to a merchant. We
are simply running two such processes at once.



We therefore set out to design a system for repeated small payments. We
did not want to force either the customer or the merchant to buy expensive
hardware, and we did not want to add significant extra load to the existing
legacy banking systems, as computing and network costs typically make up the
largest part of a bank’s non-interest expenditure. We believed, when the project
started in June 1995, that we would have to support the same levels of offline
operation as in existing cheque and credit card systems.

2 Concept

In many previously proposed electronic cash systems, the customer purchases
a number of electronic coins from a bank and spends them with one or more
merchants. The merchants can then redeem the coins with the bank. The coins
typically involve some kind of digital signature, which means that at least one
modular exponentiation is required to process each coin.

Our key innovation is that, instead of having to do a digital signature each
time she spends a coin, the customer can sign a whole stick of coins at the same
time. She can then pull the coins off the stick one by one and present them to
the merchant, who is able to check that each coin was one of the stick signed by
the customer. He only has to perform one signature verification per customer,
even when she spends a whole lot of coins.

In the first version of our system, which we shall describe next, the coins are
still generated by the bank. However this requirement can be relaxed, and some
or all of the coins generated by the customer, which gives additional benefits
— for example, she can create coins in any denomination, and indeed in any
currency, that she requires. These protocols, and their security properties, will
be described in succeeding sections. Finally, we shall discuss the lessons learned
about the relationships between local and global trust.

3 Initial Design Assumptions

The first protocol was designed on the assumption that in order to control net-
work and processing costs, small transactions would not be authorised online
to the bank. One of the lessons learned from current online payment systems
is that maintaining the 99.99% availability needed by retail customers is very
expensive. It means not just multiple redundant backup of computer and com-
munications facilities, but also sizing systems for peak traffic — typically 1pm
on the Saturday before Christmas. But if stand-in processing is possible, then
outages and traffic peaks can be dealt with by placing some traffic offline at a
fairly predictable cost in fraudulent and over-limit transactions.

In this scenario, however, there needs to be a mechanism to prevent double
spending by customers. The approach adopted in the UEPS system [And1] was

2



to issue each customer with a smartcard based electronic wallet, and in our first
protocol we assumed that this would be favoured by the industry.

The problem with smartcards is that one can either have a universal secret
that is present at least in merchants’ cards, or use public key cryptography. In
the former case, criminals might reverse engineer the card [BFLAR] and extract
the keys using chip testing techniques [Wie]. Systems such as UEPS control this
risk by having centralised reconciliation and fraud detection systems, together
with a fall-back processing mode similar to current credit card operations. The
effect is that a capable motivated opponent would be better off spending his
resources attacking the legacy credit card system.

We set out to follow the second route and use public key crypto. An important
reason for this was that the second and third authors are funded by the NetCard
project, a DTI/EPSRC initiative to develop payment mechanisms for high speed
networks, and one of our industrial partners in the project is developing a public-
key capable smartcard. However we still want the smartcard to do as little public
key crypto as possible — at most one signature for each series of transactions
between a customer and a merchant.

4 First Protocol

In our first protocol, the customer first chooses a pseudonym P and generates
a pair of keys with KP−1 being her private key and KP her public key. The
bank then creates a certificate with its name B, an expiry date e, the customer’s
credit limit $, her pseudonym P and her public key KP , all signed using the
bank’s key KB−1. Using the symbolism of [AN]:

CP = {B, e, $, P, KP}KB−1 (1)

For simplicity’s sake we will first consider that the digital coins are all for the
same amount. They are 64 bit strings constructed by encrypting a serial number
and some redundancy under a secret key selected by the bank. Different keys
are chosen for each customer pseudonym P , and these keys are kept in a secure
hardware device such as a VISA security module [VSM] at the bank. They are
not disclosed to any third party (except possibly to a court in the case of later
dispute).

The customer may now purchase digital coins in sticks which in our prototype
system contain 100 coins each. The j-th stick of coins will have

Ci = {i, j, B}KBP (2)

where the bank’s name B is used to provide redundancy.
Each stick of coins is digitally signed by the bank. Again, the bank’s name is

inserted to provide redundancy, as is the issue date t, and the coin stick is then
encrypted and supplied to the customer as

3



CS = {C1, C2, . . . , C100, {B, t, C1, C2, . . . , C100}KB−1}KP (3)

The signature protects the customer against fraud by the bank or its em-
ployees; if the bank later fails to honour a coin or even wrongfully accuses her of
having passed an invalid coin, she can produce the stick signature in her defence.

When the customer wishes to make a purchase from a merchant, she first
certifies the genuineness of the coins which she is about to spend. She may not
be able to tell in advance how many coins will be used, as she may not know
how many pages of a learned journal she will have time to read, or how much of
an online video she will watch. So she may vouch for a whole stick of them. She
does this by hashing the coins C1, . . . , C100 recursively as follows. Firstly, she
creates a set of common data CD that is shared between her and the merchant
and that specifies the transaction completely (this will include both their names,
the date, sequence numbers and whatever else is relevant; the details are not so
important as the uniqueness of the value CD). Then the last coin value is hashed
with CD to give h100 = h(CD, C100), and each of the coins is hashed into this
value in turn:

for i = 99 to 1 step -1

hi = h(CD, Ci, hi+1); (4)

Finally the customer signs h1 together with the common data CD and sends
this to the merchant, together with her public key certificate CP :

S = {h1, CD}KP−1 (5)

The effect of her signature S, which will be made explicit in her service
contract, is that she vouches for the coins: she claims they were properly issued by
a bank and not spent elsewhere in the meantime. The fact that the coins are kept,
and her signature issued, by a tamper-resistant device protects honest customers
against accidental double spending (in a software implementation, accidental
double spending could occur if a hard disk were restored from a backup).

The merchant checks the signature against the certificate, and if these verify
he signals her to begin the transaction. To spend the first coin, she sends the
merchant the values C1 and h2. If h1 = h(C1, h2) he accepts the coin as valid.
To spend the second coin, she sends C2 and h3, and so on.

In order to redeem the coins, the merchant presents to the bank the cus-
tomer’s signature S, the coins C1, . . . , Cm actually spent by the customer and
the corresponding hash values h1, . . . , hm. The bank checks the coins, verifies
that none of them has been spent before, and credits the merchant’s account.
The bank may guarantee the transaction so long as the signatures and hashes
are consistent, and the total value spent does not exceed the customer’s credit
limit (otherwise the validity of the coins could be checked online as with credit
card transactions over the merchant’s floor limit).

4



If there are multiple coin issuers in a system, then the merchant may use
a different bank from that which issued the coins. In this case, an interbank
settlement mechanism is constructed in the traditional way; the information
presented by the merchant {CD, S, C1, . . . , Cm, h1, . . . , hm+1} is treated as a
cheque and sent to the bank B through a clearing house.

During the third and fourth quarters of 1995, we implemented a version of
this protocol. We found that handling many coins at the bank was tiresome,
and set out to streamline the system. We were inspired by two comments and a
business development.

The business development was the issue by VISA and MasterCard of the
SET specification, which specifies (inter alia) that customer electronic banking
applications may be software-only and that all transactions would be authorised
online: SET is a zero floor limit protocol. We had not anticipated this, because
of the increased processing costs for banks. However, Spanish banks’ move to
online-only eftpos in 1988 had reduced card fraud from 0.21% of turnover in
1988 to 0.008% in 1991 [BABE], and this may have persuaded US banks, with
their much higher fraud rates, that online operation was worth adopting.

The first comment, from Bruce Christianson, was that only one coin in each
stick need be supplied by the bank. The others coins could simply be counters so
long as both bank and customer signatures were present and the hash function
was strong. The second comment, from Jan Camenisch, was that one might as
well have the customer generate the coins.

5 Second Protocol

Before the reader concludes that this arrangement is impossibly favourable for
the customer, let us outline the basic transaction flow by means of an example.

1. The customer, Alice, decides to purchase some service from an online provider.
To take a concrete example, a customer in San Francisco decides to purchase
a number of pages from an academic journal published by Bernd whose firm
is in Germany. The page price is 37 pfennigs.

2. Alice does not know how many pages she will want to purchase, but thinks
she is unlikely to need more than 100. So she creates 100 coins for 37 pfennigs
each and sends a signature on them to Bernd together with her credit card
details.

3. Bernd goes to his bank and gets a pre-authorisation for 37 Deutschmarks.
This validates the coins and he sends a message to Alice saying that she can
now download pages at one coin each.

4. Alice now downloads 22 pages; for each of them she sends Bernd one of the
coins, whose validity he can easily check.

5. She signals the end of the transaction, whereupon Bernd sends a capture
message to his bank which files a debit of DM 8,14 to Alice’s account. The
capture message contains a short string that proves that he received the 22

5



coins that he claims to have received; he is not able to defraud Alice by
claiming for coins that he did not in fact receive.

6. The system is also secure in that all disputes can be resolved. All parties
to the transaction — Alice, Bernd and their bankers — have authenticated
evidence of the actions of the other parties.

The formal details are as follows. When a customer wishes to use m digital
coins for denomination δ in a transaction with merchant B, she first generates
the common data CD that are unique to the transaction. She then generates a
random nonce NA and calculates the last coin, Cm, as

Cm = h(CD, NA) (6)

Next, the rest of the coins in the stick are generated in reverse order by
hashing the previous coin with the common data and the index of the coin in
the stick:

for i = m-1 to 0 step -1

Ci = h(CD, i, Ci+1); (7)

Finally she signs h0, the coin denomination δ, the number of coins m and
the common data CD, and sends these to the merchant.

This can be thought of as a prepayment transaction of the type used to pro-
vide deposits for rental cars and hotel reservations; the merchant makes an au-
thorisation request for the maximum amount, namely mδ, with the SET SaleInd
flag set to false so that the credit card network treats it as a preauthorisation
rather than as an immediate sale. Given a positive authorisation response, he
sends a signed acknowledgement to the customer.

She can now spend the coins C1, C2 and so on, and the merchant can verify
them by a simple hashing operation. Once the transaction is complete, and the
merchant has received coins C1 ... Ck, the merchant sends the bank Ck plus
the total amount claimed. The bank can check the transaction by dividing the
amount claimed by the coin denomination δ to get the number of coins spent,
and work back through that many rounds of hashing to check that the result is
the same C0 that appeared in the original authorisation request.

6 Third Protocol

The second, more lightweight, protocol has a number of advantages over the
first version. It lets customers to make small transactions in any currency they
choose, with electronic coins of whatever denomination is convenient. It is made
possible by the fact that all SET transactions are authorised online against the
customer’s current available balance. So long as this is an effective control on
double spending, the second protocol appears safe.

6



A variant will be needed in the interim to work with the first version of
SET. This draft does not explicitly support micropayments; there is no room
in the message formats for the coins, and the customer does not sign anything
for the merchant. Nonetheless, we can still bootstrap micropayments on top of
SET compliant systems. The customer can generate another signature to sign
the coins for the merchant, and he in turn can simply keep this together with
the coins as evidence that she did indeed spend kδ with him. This is directly
comparable to the way in which current terminal draft capture systems print
out a draft that is signed by the customer, and retained by him against the
possibility of a disputed transaction.

However it would be simpler if the micropayment system were supported in
SET or its successors. Assuming that this comes to pass, what would the ideal
protocol look like?

7 Fourth Protocol

Neither the first version of SET nor the second version of our protocol has much
room for error. Online authorisation could fail because of attacks on the under-
lying legacy systems; alternatively, there might be a systematic failure of the
public-key front end that SET bolts on to them (e.g., a leak or false revocation
of a root certification key). Regardless of the cryptographic sophistication, real
world systems inevitably have bugs in their design, implementation and opera-
tion. Such bugs account for the majority of actual frauds on banking systems in
the past, and recovering security has in some cases been very expensive because
it was not a design requirement [And2].

So it is prudent to minimise the number of single points of failure, and enable
security to be recovered after unexpected failures (insofar as this is possible).
How can such resilience be built into a micropayment system?

Our suggestion is that instead of moving all the way from the first protocol
to the second by letting the customer manufacture the coins, we retain the
requirement that the bank supply at least one coin in each stick, which we will
call the root coin. The customer will be issued with a limited supply of root coins,
and may have a smartcard or other tamper-resistant device that performs part
of the protocol and thus makes double spending difficult. The resulting protocol
is similar to the second protocol but with the nonce NA replaced by a root coin
Cj supplied by the bank. In addition, instead of signing h0 and sending it to the
merchant, the customer will sign and reveal h(h0).

This improves substantially on the second protocol since, in the event of a
failure of other security mechanisms, banks can move to a fully online system in
which transactions are checked online by the card issuing bank wherever fraud
rises above the level at which this becomes economic. As the issuing bank knows
Cj , it can calculate and return h0 as an authorisation response through VISA
and the acquiring bank to the acquirer gateway (which provides the guarantee
to the merchant).

7



Of course, precautions may have to be taken to prevent a false host attack
in which customers collude in real time with someone doing an active wiretap
on the legacy systems between the acquirer gateway and the card issuer. There
are a number of options:

– the issuing bank could sign h0. However, this would not protect against a
catastrophic failure of the certification authority structure;

– the issuing bank could return h0 encrypted under the issuer working key
used in the current legacy systems. However this would not protect against a
catastrophic failure of the legacy infrastructure, such as if organised criminals
build a DES keysearch machine to break zone control master keys;

– one might even ignore the problem, arguing that legacy systems have been
vulnerable to message manipulation for decades; that there have been no
significant attacks; and that if any materialised, they could be dealt with
piecemeal by installing line encryptors and other ad hoc controls.

Whatever the engineering details, this fourth protocol can clearly give us a
low cost security recovery mechanism. Its independence of most of the SET and
legacy system processing suggests that it could help us to recover after many of
the unpredictable failures that experience shows to be inevitable.

8 Conclusion

Our recursive hashing technique greatly reduces the computational complexity in
applications where a series of low value payments are made to the same merchant.
We have shown how it can be used in simple payment schemes based on both
the smartcard and the online processing models of electronic commerce, and can
also provide some novel and valuable features, such as a security recovery facility
that does not depend on either the legacy systems or the SET protocols. It is
an open problem whether hashing techniques can be combined with the more
complex anonymous cash schemes.

In December 1995, we learned that three other groups had independently
developed micropayment systems that are rather similar to our second protocol.
These are the ‘Tick Payments’ of Torben Pedersen of the CAFE project, the
‘PayWords’ of Ron Rivest and Adi Shamir [RS], and a scheme from the iKP
team at IBM Zürich [HSW].

From the scientific point of view, one of the more interesting lessons learned
from implementing our first protocol and developing the others from it has been
that local and global trust interact in interesting and often unexpected ways.
The details of this will be the subject of a future paper; the high order bit
appears to be that the global trust has to go somewhere. In a payment system,
the global mechanism to prevent double spending can be a centralised system
of online authorisation, authorisation using end-to-end authentication, tamper
resistant objects or (more realistically) some combination of these. Moving the

8



primary locus of trust, even slightly, can have profound effects; and very small
design changes can greatly improve the system’s resilience and robustness.

Acknowledgement: The first author is grateful to the Isaac Newton Insti-
tute for hospitality while this paper was being written. The second and third
authors were supported by the LINK/HPIP NetCard project (EPSRC number
DR/K 46293). All three authors acknowledge the help of Mike Roe and other
colleagues at the security group at Cambridge University in tweaking bugs in
early versions of this protocol.

References

[And1] “UEPS — A Second Generation Electronic Wallet”, RJ Anderson, in Com-
puter Security — ESORICS 92, Springer LNCS v 648 pp 411–418

[And2] RJ Anderson, “Why Cryptosystems Fail”, in Communications of the ACM
v 37 no 11 (November 1994) pp 32 - 40

[AB] “Cryptographic Credit Control in Pre-payment Metering Systems”, RJ An-
derson, SJ Bezuidenhout, Proceedings, 1995 IEEE Symposium on Security
and Privacy pp 15–23

[AN] “Programming Satan’s Computer”, RJ Anderson and RM Needham, in
Springer Lecture Notes in Computer Science volume 1000

[Beg] “Fast Server-Aided RSA Signatures Secure Against Active Attacks”, P
Béguin, JJ Quisquater, Advances in Cryptology - CRYPTO 95, Springer
LNCS 963 pp 57–69

[BABE] “Card Fraud: Banking’s Boom Sector”, in Banking Automation Bulletin for
Europe (Mar 92) pp 1–5

[BFLAR] S Blythe, B Fraboni, S Lall, H Ahmed, U de Riu, “Layout Reconstruction
of Complex Silicon Chips”, in IEEE J. of Solid-State Circuits v 28 no 2 (Feb
93) pp 138–145

[Cha] “Achieving Electronic Privacy”, D Chaum, Scientific American (August 92)
pp 96–101

[CAFE] “The ESPRIT Project CAFE — High Security Digital Payment Systems”,
JP Boly, A Bosselaers, R Cramer, R Michelsen, S Mjølsnes, F Muller, T
Pedersen, B Pfitzmann, P de Rooij, B Schoenmakers, M Schunter, L Vallée,
M Waidner, in Computer Security — ESORICS 94, Springer Lecture Notes
on Computer Science volume 875 pp 217–230

[HSW] “Micro-Payments based on iKP”, R Hauser, M Steiner, M Waidner, preprint,
IBM Zürich, January 16th 1996

[Ped] “Electronic Payments of Small Amounts”, TP Pedersen, Aarhus University
Technical Report DAIMI PB–495, August 1995

[RS] “PayWord and MicroMint–Two Simple Micropayment Schemes”, RL Rivest,
A Shamir, preprint, MIT, January 26, 1996

[SET] Secure Electronic Transactions, VISA and MasterCard 1996
[VSM] VISA Security Module Operations Manual, VISA, 1986
[Wie] “Electro-optic sampling of high-speed devices and integrated circuits”,

JM Wiesenfeld, IBM Journal of Research and Development v 34 no 2/3
(Mar/May 90) pp 141–161

9


