
Package ‘safejoin’
June 2, 2024

Title Perform ``Safe'' Table Joins

Version 0.2.0

Description The goal of 'safejoin' is to guarantee that when performing joins ex-
tra rows are not added to your data. 'safejoin' provides a wrap-
per around 'dplyr::left_join' that will raise an error when extra rows are unexpect-
edly added to your data. This can be useful when working with data where you ex-
pect there to be a many to one relationship but you are not certain the relationship holds.

License MIT + file LICENSE

Encoding UTF-8

Suggests testthat, knitr, rmarkdown

Imports dplyr, glue, lifecycle

RoxygenNote 7.2.3

URL https://github.com/SamEdwardes/safejoin

BugReports https://github.com/SamEdwardes/safejoin/issues

NeedsCompilation no

Author Sam Edwardes [aut, cre]

Maintainer Sam Edwardes <edwardes.s@gmail.com>

Repository CRAN

Date/Publication 2024-06-02 21:10:03 UTC

R topics documented:

safe_left_join . 2

Index 4

1

https://github.com/SamEdwardes/safejoin
https://github.com/SamEdwardes/safejoin/issues

2 safe_left_join

safe_left_join Validate extra rows are added not added to the left hand side

Description

[Deprecated] Perform a "safe" left join where it is guaranteed that no additional rows are added to
the left hand side table. For more information on left joins see (dplyr::left_join).

Usage

safe_left_join(..., action = "error", relationship = "*:1")

Arguments

... Arguments passed on to dplyr::left_join

x,y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data
frames (e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.

safe_left_join 3

• If FALSE, only keys from x are retained. For right and full joins, the data
in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

action What should happen when the number of rows changes from a join? Options
include: ’error’, ’warning’, or ’message’. By default ’error’.

relationship What is the expected relationship between x and y? At this time the only avail-
able option is ’*:1’, indicating a many to one relationship between x and y. In
the future more options may be added.

Value

An object of the same type as x. The order of the rows and columns of x is preserved as much as
possible. The output has the following properties:

Examples

The relationship between `x` and `y` is '*:1'. No extra rows will be added
to the left hand side.
x <- data.frame(key = c("a", "a", "b"), value_x = c(1, 4, 2))
y <- data.frame(key = c("a", "b"), value_y = c(1, 1))
safe_left_join(x, y)

The relationship between `x` and `y` is '1:*'. An error should be raised
because additional rows will be added to the left hand side.
Not run: x <- data.frame(key = c("a", "b"), value_x = c(1, 2))
y <- data.frame(key = c("a", "a"), value_y = c(1, 1))
safe_left_join(x, y)
End(Not run)

Alternatively instead of raising an error a warning or message can be
outputted.
x <- data.frame(key = c("a", "b"), value_x = c(1, 2))
y <- data.frame(key = c("a", "a"), value_y = c(1, 1))
safe_left_join(x, y, action = "warning")
safe_left_join(x, y, action = "message")

Index

?join_by, 2

cross_join(), 2

dplyr::left_join, 2

join_by(), 2

safe_left_join, 2

4

	safe_left_join
	Index

