
Package ‘naryn’
September 27, 2024

Type Package

Title Native Access Medical Record Retriever for High Yield Analytics

Version 2.6.30

Description A toolkit for medical records data analysis. The 'naryn'
package implements an efficient data structure for storing medical
records, and provides a set of functions for data extraction,
manipulation and analysis.

License MIT + file LICENSE

URL https://tanaylab.github.io/naryn/

BugReports https://github.com/tanaylab/naryn/issues

Depends R (>= 3.0.0), utils

Imports dplyr, glue, lifecycle, magrittr, parallel, purrr, stringr,
tidyr, yaml

Suggests brio, callr, devtools, forcats, knitr, readr, rlang,
rmarkdown, spelling, testthat (>= 3.0.4), tibble, tools, withr

VignetteBuilder knitr

Config/testthat/edition 3

Config/testthat/parallel false

Config/testthat/start-first logical_tracks, w_test-options,
x_multiple_db

Encoding UTF-8

Language en-US

LazyLoad yes

NeedsCompilation yes

OS_type unix

RoxygenNote 7.3.2

Author Misha Hoichman [aut],
Aviezer Lifshitz [aut, cre],
Ben Gilat [aut],

1

https://tanaylab.github.io/naryn/
https://github.com/tanaylab/naryn/issues

2 Contents

Netta Mendelson-Cohen [ctb],
Rami Jaschek [ctb],
Weizmann Institute of Science [cph]

Maintainer Aviezer Lifshitz <aviezer.lifshitz@weizmann.ac.il>

Repository CRAN

Date/Publication 2024-09-27 15:10:08 UTC

Contents
naryn-package . 4
emr_annotate . 4
emr_cor . 5
emr_date2time . 9
emr_db.connect . 11
emr_db.reload . 13
emr_db.subset . 13
emr_db.subset.ids . 14
emr_db.subset.info . 15
emr_db.unload . 15
emr_dist . 16
emr_download_example_data . 19
emr_entries.get . 20
emr_entries.get_all . 21
emr_entries.ls . 21
emr_entries.reload . 22
emr_entries.rm . 22
emr_entries.rm_all . 23
emr_entries.set . 24
emr_extract . 24
emr_filter.attr.src . 28
emr_filter.clear . 29
emr_filter.create . 29
emr_filter.create_from_name . 31
emr_filter.exists . 31
emr_filter.info . 32
emr_filter.ls . 33
emr_filter.name . 34
emr_filter.rm . 35
emr_filters.info . 35
emr_ids_coverage . 36
emr_ids_vals_coverage . 37
emr_monthly_iterator . 38
emr_quantiles . 39
emr_screen . 42
emr_summary . 45
emr_time . 48
emr_time2char . 50

Contents 3

emr_time2date . 51
emr_time2dayofmonth . 51
emr_time2hour . 52
emr_time2month . 53
emr_time2posix . 54
emr_time2year . 55
emr_track.addto . 56
emr_track.attr.export . 57
emr_track.attr.get . 58
emr_track.attr.rm . 59
emr_track.attr.set . 59
emr_track.create . 60
emr_track.dbs . 64
emr_track.exists . 65
emr_track.ids . 65
emr_track.import . 66
emr_track.info . 68
emr_track.logical.create . 68
emr_track.logical.exists . 69
emr_track.logical.info . 70
emr_track.logical.rm . 71
emr_track.ls . 71
emr_track.mv . 73
emr_track.percentile . 74
emr_track.readonly . 75
emr_track.rm . 76
emr_track.unique . 76
emr_track.var.get . 77
emr_track.var.ls . 78
emr_track.var.rm . 79
emr_track.var.set . 80
emr_vtrack.attr.src . 81
emr_vtrack.clear . 82
emr_vtrack.create . 82
emr_vtrack.create_from_name . 85
emr_vtrack.exists . 86
emr_vtrack.info . 87
emr_vtrack.ls . 88
emr_vtrack.name . 89
emr_vtrack.rm . 90
string_to_var . 91
var_to_string . 91

Index 93

4 emr_annotate

naryn-package Toolkit for medical records data analysis

Description

’naryn’ package is intended to help users to efficiently analyze data in time-patient space.

Details

For a complete list of help resources, use library(help = "naryn").

More information about the options can be found in ’User manual’ of the package.

Author(s)

Maintainer: Aviezer Lifshitz <aviezer.lifshitz@weizmann.ac.il>

Authors:

• Misha Hoichman <misha@hoichman.com>

• Ben Gilat <ben.gilat@weizmann.ac.il>

Other contributors:

• Netta Mendelson-Cohen <Netta.Mendelsoncohen@weizmann.ac.il> [contributor]

• Rami Jaschek <rami.jaschek@weizmann.ac.il> [contributor]

• Weizmann Institute of Science [copyright holder]

See Also

Useful links:

• https://tanaylab.github.io/naryn/

• Report bugs at https://github.com/tanaylab/naryn/issues

emr_annotate Annotates id-time points table

Description

Annotates id-time points table by the values given in the second table.

Usage

emr_annotate(x, y)

https://tanaylab.github.io/naryn/
https://github.com/tanaylab/naryn/issues

emr_cor 5

Arguments

x sorted id-time points table that is expanded

y sorted id-time points table that is used for annotations

Details

This function merges two sorted id-time points tables ’x’ and ’y’ by matching ’id’, ’time’ and ’ref’
columns. The result is a new id-time points table that has all the additional columns of ’x’ and ’y’.

Two rows match if ’id’ AND ’time’ match AND either ’ref’ matches OR one of the ’ref’ is ’-1’.

If a row RX from ’x’ matches N rows RY1, ..., RYn from ’y’, N rows are added to the result: [RX
RY1], ..., [RX RYn].

If a row RX from ’x’ does not match any rows from ’y’, a row of [RX NA] form is added to the
result (i.e. all the values of columns borrowed from ’y’ are set to ’NA’).

A missing ’ref’ column is interpreted as if reference equals ’-1’.

Both of ’x’ and ’y’ must be sorted by ’id’, ’time’ and ’ref’ (in this order!). Note however that all the
package functions (such as ’emr_extract’, ...) return id-time point tables always properly sorted.

Value

A data frame with all the columns from ’x’ and additional columns from ’y’.

See Also

emr_extract

Examples

emr_db.init_examples()

r1 <- emr_extract("sparse_track", keepref = TRUE)
r2 <- emr_extract("dense_track", keepref = TRUE)
r2$dense_track <- r2$dense_track + 1000
emr_annotate(r1, r2)

emr_cor Calculates correlation statistics for pairs of track expressions

Description

Calculates correlation statistics for pairs of track expressions.

6 emr_cor

Usage

emr_cor(
...,
cor.exprs = NULL,
include.lowest = FALSE,
right = TRUE,
stime = NULL,
etime = NULL,
iterator = NULL,
keepref = FALSE,
filter = NULL,
dataframe = FALSE,
names = NULL

)

Arguments

... pairs of [factor.expr, breaks], where factor.expr is the track expression and
breaks are the breaks that determine the bin or ’NULL’.

cor.exprs vector of track expressions for which correlation statistics is calculated.

include.lowest if ’TRUE’, the lowest (or highest, for ’right = FALSE’) value of the range deter-
mined by breaks is included.

right if ’TRUE’ the intervals are closed on the right (and open on the left), otherwise
vice versa.

stime start time scope.

etime end time scope.

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expressions. See also ’iterator’ section.

keepref If ’TRUE’ references are preserved in the iterator.

filter Iterator filter.

dataframe return a data frame instead of an N-dimensional vector.

names names for track expressions in the returned dataframe (only relevant when dataframe
== TRUE)

Details

This function works in a similar manner to ’emr_dist’. However instead of returning a single counter
for each bin ’emr_cor’ returns 5 matrices of ’length(cor.exprs) X length(cor.exprs)’ size. Each
matrix represents the correlation statistics for each pair of track expressions from ’cor.exprs’. Given
a ’bin’ and a pair of track expressions ’cor.exprs[i]’ and ’cor.exprs[j]’ the corresponding matrix
contains the following information:

$n[bin,i,j] - number of times when both ’cor.exprs[i]’ and ’cor.exprs[j]’ exist $e[bin,i,j] - expec-
tation (average) of values from ’cor.exprs[i]’ when ’cor.exprs[j]’ exists $var[bin,i,j] - variance of
values from ’cor.exprs[i]’ when ’cor.exprs[j]’ exists $cov[bin,i,j] - covariance of ’cor.exprs[i]’ and
’cor.exprs[j]’ $cor[bin,i,j] - correlation of ’cor.exprs[i]’ and ’cor.exprs[j]’

emr_cor 7

Similarly to ’emr_dist’ ’emr_cor’ can do multi-dimensional binning. Given N dimensional binning
the individual data in the matrices can be accessed as: $cor[bin1, ..., binN, i, j].

If dataframe = TRUE the return value is a data frame with a column for each track expression,
additional columns i,j with pairs of cor_exprs and another 5 columns: ’n’, ’e’, ’var’, ’cov’, ’cor’
with the same values as the matrices described above.

Value

A list of 5 elements each containing a N-dimensional vector (N is the number of ’expr’-’breaks’
pairs). The member of each vector is a specific statistics matrix. If dataframe == TRUE - a data
frame with a column for each track expression, additional columns i,j with pairs of cor_exprs and
another 5 columns: ’n’, ’e’, ’var’, ’cov’, ’cor’, see description.

iterator

There are a few types of iterators:

Track iterator: Track iterator returns the points (including the reference) from the specified track.
Track name is specified as a string. If ‘keepref=FALSE‘ the reference of each point is set to
‘-1‘
Example:

Returns the level of glucose one hour after the insulin shot was made
emr_vtrack.create("glucose", "glucose_track", func="avg", time.shift=1)
emr_extract("glucose", iterator="insulin_shot_track")

Id-Time Points Iterator: Id-Time points iterator generates points from an *id-time points table*.
If ‘keepref=FALSE‘ the reference of each point is set to ‘-1‘.
Example:

Returns the level of glucose one hour after the insulin shot was made
emr_vtrack.create("glucose", "glucose_track", func = "avg", time.shift = 1)
r <- emr_extract("insulin_shot_track") # <– implicit iterator is used here
emr_extract("glucose", iterator = r)

Ids Iterator: Ids iterator generates points with ids taken from an *ids table* and times that run
from ‘stime‘ to ‘etime‘ with a step of 1. If ‘keepref=TRUE‘ for each id-time pair the iterator
generates 255 points with references running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one
point is generated for the given id and time, and its reference is set to ‘-1‘.
Example:

stime <- emr_date2time(1, 1, 2016, 0)
etime <- emr_date2time(31, 12, 2016, 23)
emr_extract("glucose", iterator = data.frame(id = c(2, 5)), stime = stime, etime = etime)

Time Intervals Iterator: *Time intervals iterator* generates points for all the ids that appear in
’patients.dob’ track with times taken from a *time intervals table* (see: Appendix). Each time
starts at the beginning of the time interval and runs to the end of it with a step of 1. That being

8 emr_cor

said the points that lie outside of ‘[stime, etime]‘ range are skipped.
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references run-
ning from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id and
time, and its reference is set to ‘-1‘.
Example:
Returns the level of hangover for all patients the next day after New Year Eve for the years
2015 and 2016
stime1 <- emr_date2time(1, 1, 2015, 0)
etime1 <- emr_date2time(1, 1, 2015, 23)
stime2 <- emr_date2time(1, 1, 2016, 0)
etime2 <- emr_date2time(1, 1, 2016, 23)
emr_extract("alcohol_level_track", iterator = data.frame(
stime = c(stime1, stime2),
etime = c(etime1, etime2)
))

Id-Time Intervals Iterator: *Id-Time intervals iterator* generates for each id points that cover
‘[’stime’, ’etime’]‘ time range as specified in *id-time intervals table* (see: Appendix). Each
time starts at the beginning of the time interval and runs to the end of it with a step of 1. That
being said the points that lie outside of ‘[stime, etime]‘ range are skipped.
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references
running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id
and time, and its reference is set to ‘-1‘

Beat Iterator: *Beat Iterator* generates a "time beat" at the given period for each id that appear
in ’patients.dob’ track. The period is given always in hours.
Example:
emr_extract("glucose_track", iterator=10, stime=1000, etime=2000)
This will create a beat iterator with a period of 10 hours starting at ‘stime‘ up until ‘etime‘ is
reached. If, for example, ‘stime‘ equals ‘1000‘ then the beat iterator will create for each id
iterator points at times: 1000, 1010, 1020, ...
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references
running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id
and time, and its reference is set to ‘-1‘.

Extended Beat Iterator: *Extended beat iterator* is as its name suggests a variation on the beat
iterator. It works by the same principle of creating time points with the given period however
instead of basing the times count on ‘stime‘ it accepts an additional parameter - a track or a
Id-Time Points table - that instructs what should be the initial time point for each of the ids.
The two parameters (period and mapping) should come in a list. Each id is required to appear
only once and if a certain id does not appear at all, it is skipped by the iterator.
Anyhow points that lie outside of ‘[stime, etime]‘ range are not generated.
Example:
Returns the maximal weight of patients at one year span starting from their birthdays
emr_vtrack.create("weight", "weight_track", func = "max", time.shift = c(0, year()))
emr_extract("weight", iterator = list(year(), "birthday_track"), stime = 1000, etime = 2000)

Periodic Iterator: periodic iterator goes over every year/month. You can use it by running emr_monthly_iterator
or emr_yearly_iterator.
Example:

emr_date2time 9

iter <- emr_yearly_iterator(emr_date2time(1, 1, 2002), emr_date2time(1, 1, 2017))
emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)
iter <- emr_monthly_iterator(emr_date2time(1, 1, 2002), n = 15)
emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)

Implicit Iterator: The iterator is set implicitly if its value remains ‘NULL‘ (which is the default).
In that case the track expression is analyzed and searched for track names. If all the track
variables or virtual track variables point to the same track, this track is used as a source for
a track iterator. If more then one track appears in the track expression, an error message is
printed out notifying ambiguity.

Revealing Current Iterator Time: During the evaluation of a track expression one can access a spe-
cially defined variable named ‘EMR_TIME‘ (Python: ‘TIME‘). This variable contains a vector
(‘numpy.ndarray‘ in Python) of current iterator times. The length of the vector matches the length
of the track variable (which is a vector too).
Note that some values in ‘EMR_TIME‘ might be set 0. Skip those intervals and the values of the
track variables at the corresponding indices.
Returns times of the current iterator as a day of month
emr_extract("emr_time2dayofmonth(EMR_TIME)", iterator = "sparse_track")

See Also

emr_dist, cut, emr_track.unique

Examples

emr_db.init_examples()
emr_cor("categorical_track", c(0, 2, 5),

cor.exprs = c("sparse_track", "1/dense_track"),
include.lowest = TRUE, iterator = "categorical_track",
keepref = TRUE

)
emr_cor("categorical_track", c(0, 2, 5),

cor.exprs = c("sparse_track", "1/dense_track"),
include.lowest = TRUE, iterator = "categorical_track",
keepref = TRUE,
dataframe = TRUE

)

emr_date2time Converts date and hour to internal time format

Description

Converts date and hour to internal time format.

10 emr_date2time

Usage

emr_date2time(day, month, year, hour = 0)

Arguments

day vector of days of month in [1, 31] range

month vector of months in [1, 12] range

year vector of years

hour vector of hours in [0, 23] range

Details

This function converts date and hour to internal time format. Note: the earliest valid time is 1 March
1867.

Note: if one of the arguments (’day’, ...) is a vector, then the other arguments must be vectors two
of identical size or scalars. Internally a data frame is built out of all the vectors or scalars before the
conversion is applied. Hence rules for data frame creation apply to this function.

Value

Vector of converted times.

See Also

emr_time2hour, emr_time2dayofmonth, emr_time2month, emr_time2year

Examples

emr_db.init_examples()

30 January, 1938, 6:00 - birthday of Islam Karimov
t <- emr_date2time(30, 1, 1938, 6)
emr_time2hour(t)
emr_time2dayofmonth(t)
emr_time2month(t)
emr_time2year(t)

cover all times when Islam Karimov could have been born
(if we don't know the exact hour!)
t <- emr_date2time(30, 1, 1938, 0:23)

emr_db.connect 11

emr_db.connect Initializes connection with Naryn Database

Description

Initializes connection with Naryn Database

Usage

emr_db.connect(db_dirs = NULL, load_on_demand = NULL, do_reload = FALSE)

emr_db.init(
global.dir = NULL,
user.dir = NULL,
global.load.on.demand = TRUE,
user.load.on.demand = TRUE,
do.reload = FALSE

)

emr_db.ls()

Arguments

db_dirs vector of db directories

load_on_demand vector of booleans, same length as db_dirs, if load_on_demand[i] is FALSE,
tracks from db_dirs[i] will be pre-loaded, or a single ’TRUE’ or ’FALSE’ to set
load_on_demand for all the databases. If NULL is passed, load_on_demand is
set to TRUE on all the databases

do_reload If TRUE, rebuilds DB index files.
global.dir, user.dir, global.load.on.demand, user.load.on.demand,
do.reload

old parameters of the deprecated function emr_db.init

Details

Call ‘emr_db.connect‘ function to establish the access to the tracks in the db_dirs. To establish
a connection using ‘emr_db.connect‘, Naryn requires to specify at-least one db dir. Optionally,
‘emr_db.connect‘ accepts additional db dirs which can also contain additional tracks.

In a case where 2 or more db dirs contain the same track name (namespace collision), the track will
be taken from the db dir which was passed *last* in the order of connections.

For example, if we have 2 db dirs /db1 and /db2 which both contain a track named track1, the call
emr_db.connect(c('/db1', '/db2')) will result with Naryn using track1 from /db2. As you
might expect the overriding is consistent not only for the track’s data, but also for any other Naryn
entity using or pointing to the track.

Even though all the db dirs may contain track files, their designation is different. All the db dirs
except the last dir in the order of connections are mainly read-only. The directory which was

12 emr_db.connect

connected last in the order, also known as *user dir*, is intended to store volatile data like the
results of intermediate calculations.

New tracks can be created only in the db dir which was last in the order of connections, using
emr_track.import or emr_track.create. In order to write tracks to a db dir which is not last
in the connection order, the user must explicitly reconnect and set the required db dir as the last in
order, this should be done for a well justified reason.

When the package is attached it internally calls ’emr_db.init_examples’ which sets a single example
db dir - ’PKGDIR/naryndb/test’. (’PKGDIR’ is the directory where the package is installed).

Physical files in the database are supposed to be managed exclusively by Naryn itself. Manual
modification, addition or deletion of track files may be done, yet it must be ratified via running
’emr_db.reload’. Some of these manual changes however (like moving a track from global space to
user or vice versa) might cause ’emr_db.connect’ to fail. ’emr_db.reload’ cannot be invoked then as
it requires first the connection to the DB be established. To break the deadlock use ’do_reload=True’
parameter within ’emr_db.connect’. This will connect to the DB and rebuild the DB index files in
one step.

If ’load_on_demand’ is ’TRUE’ a track is loaded into memory only when it is accessed and it is
unloaded from memory as R sessions ends or the package is unloaded.

If ’load_on_demand’ parameter is ’FALSE’, all the tracks from the specified space (global / user) are
pre-loaded into memory making subsequent track access significantly faster. As loaded tracks reside
in shared memory, other R sessions running on the same machine, may also enjoy significant run-
time boost. On the flip side, pre-loading all the tracks prolongs the execution of ’emr_db.connect’
and requires enough memory to accommodate all the data.

Choosing between the two modes depends on the specific needs. While ’load_on_demand=TRUE’
seems to be a solid default choice, in an environment where there are frequent short-living R ses-
sions, each accessing a track one might opt for running a "daemon" - an additional permanent R
session. The daemon would pre-load all the tracks in advance and stay alive thus boosting the
run-time of the later emerging sessions.

Upon completion the connection is established with the database and a few variables are added to
the .naryn environment. These variables should not be modified by the user!

.naryn$EMR_GROOT First db dir of tracks in the order of connections
.naryn$EMR_UROOT Last db dir of tracks in the order of connection (user dir)
.naryn$EMR_ROOTS Vector of directories (db_dirs)

emr_db.init is the old version of this function which is now deprecated.

emr_db.ls lists all the currently connected databases.

Value

None.

See Also

emr_db.reload, emr_track.import, emr_track.create, emr_track.rm, emr_track.ls, emr_vtrack.ls,
emr_filter.ls

emr_db.reload 13

emr_db.reload Reloads database

Description

Reloads database

Usage

emr_db.reload()

Details

Rebuilds Naryn database index files. Use this function if you manually add/delete/move/modify
track files or if you suspect that the database is corrupted: existing tracks cannot be found, deleted
ones continue to appear or a warning message is issued by Naryn itself recommending to run
’emr_db.reload’.

Value

None.

See Also

emr_db.connect, emr_track.ls, emr_vtrack.ls

Examples

emr_db.reload()

emr_db.subset Defines an ids subset

Description

Defines an ids subset.

Usage

emr_db.subset(src = "", fraction = NULL, complementary = NULL)

Arguments

src track name or ids table or ’NULL’

fraction fraction of data to be sampled from ’src’ in [0,1] range

complementary ’TRUE’ for a complementary subset, otherwise ’FALSE’

14 emr_db.subset.ids

Details

’emr_db.subset’ creates an ids subset" ("viewport") of data of "fraction * sizeof(’src’)" size by
sampling the ids from ’src’. Once the subset is defined only the ids that are in the subset are used
by various functions and iterators. Other ids are ignored.

’src’ can be a track name or an ids table. If ’complementary’ is ’TRUE’ the complementary set of
sampled ids is used as a subset.

If ’src’ is ’NULL’ the current subset is annihilated.

Value

None.

See Also

emr_db.connect, emr_db.subset.ids, emr_db.subset.info

emr_db.subset.ids Returns the ids that constitute the current ids subset

Description

Returns the ids that constitute the current ids subset.

Usage

emr_db.subset.ids()

Details

’emr_db.subset.ids’ returns the ids that constitute the current ids subset. The ids are returned in "ids
table" format.

If no ids subset is defined, ’emr_db.subset.ids’ returns ’NULL’.

Value

Ids table or ’NULL’

See Also

emr_db.subset

emr_db.subset.info 15

emr_db.subset.info Returns information about the current subset

Description

Returns information about the current subset.

Usage

emr_db.subset.info()

Details

’emr_db.subset.info’ returns the parameters that were used to define the current subset or ’NULL’
if no subset has been defined.

Value

Information about the current subset or ’NULL’.

See Also

emr_db.subset, emr_db.subset.ids

emr_db.unload Unload all tracks from naryn database

Description

Unload all tracks from naryn database

Usage

emr_db.unload()

Value

None.

Examples

emr_db.unload()

16 emr_dist

emr_dist Calculates distribution of track expressions

Description

Calculates distribution of track expressions’ values over the given set of bins.

Usage

emr_dist(
...,
include.lowest = FALSE,
right = TRUE,
stime = NULL,
etime = NULL,
iterator = NULL,
keepref = FALSE,
filter = NULL,
dataframe = FALSE,
names = NULL

)

Arguments

... pairs of [expr, breaks], where expr is the track expression and breaks are the
breaks that determine the bin or ’NULL’.

include.lowest if ’TRUE’, the lowest (or highest, for ’right = FALSE’) value of the range deter-
mined by breaks is included

right if ’TRUE’ the intervals are closed on the right (and open on the left), otherwise
vice versa.

stime start time scope

etime end time scope

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expressions. See also ’iterator’ section.

keepref If ’TRUE’ references are preserved in the iterator.

filter Iterator filter.

dataframe return a data frame instead of an N-dimensional vector.

names names for track expressions in the returned dataframe (only relevant when dataframe
== TRUE)

emr_dist 17

Details

This function calculates the distribution of values of the numeric track expressions over the given
set of bins.

The range of bins is determined by ’breaks’ argument. For example: ’breaks=c(x1, x2, x3, x4)’
represents three different intervals (bins): (x1, x2], (x2, x3], (x3, x4].

If the track expression constitutes of a categorical track or a virtual track which source is a categor-
ical track, the ’breaks’ is allowed to be ’NULL’ meaning that the breaks are derived implicitly from
the unique values of the underlying track.

’emr_dist’ can work with any number of dimensions. If more than one ’expr’-’breaks’ pair is passed,
the result is a multidimensional vector, and an individual value can be accessed by [i1,i2,...,iN]
notation, where ’i1’ is the first track and ’iN’ is the last track expression.

Value

N-dimensional vector where N is the number of ’expr’-’breaks’ pairs. If dataframe == TRUE - a
data frame with a column for each track expression and an additional column ’n’ with counts.

iterator

There are a few types of iterators:

Track iterator: Track iterator returns the points (including the reference) from the specified track.
Track name is specified as a string. If ‘keepref=FALSE‘ the reference of each point is set to
‘-1‘
Example:

Returns the level of glucose one hour after the insulin shot was made
emr_vtrack.create("glucose", "glucose_track", func="avg", time.shift=1)
emr_extract("glucose", iterator="insulin_shot_track")

Id-Time Points Iterator: Id-Time points iterator generates points from an *id-time points table*.
If ‘keepref=FALSE‘ the reference of each point is set to ‘-1‘.
Example:

Returns the level of glucose one hour after the insulin shot was made
emr_vtrack.create("glucose", "glucose_track", func = "avg", time.shift = 1)
r <- emr_extract("insulin_shot_track") # <– implicit iterator is used here
emr_extract("glucose", iterator = r)

Ids Iterator: Ids iterator generates points with ids taken from an *ids table* and times that run
from ‘stime‘ to ‘etime‘ with a step of 1. If ‘keepref=TRUE‘ for each id-time pair the iterator
generates 255 points with references running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one
point is generated for the given id and time, and its reference is set to ‘-1‘.
Example:

stime <- emr_date2time(1, 1, 2016, 0)
etime <- emr_date2time(31, 12, 2016, 23)

18 emr_dist

emr_extract("glucose", iterator = data.frame(id = c(2, 5)), stime = stime, etime = etime)

Time Intervals Iterator: *Time intervals iterator* generates points for all the ids that appear in
’patients.dob’ track with times taken from a *time intervals table* (see: Appendix). Each time
starts at the beginning of the time interval and runs to the end of it with a step of 1. That being
said the points that lie outside of ‘[stime, etime]‘ range are skipped.
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references run-
ning from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id and
time, and its reference is set to ‘-1‘.
Example:
Returns the level of hangover for all patients the next day after New Year Eve for the years
2015 and 2016
stime1 <- emr_date2time(1, 1, 2015, 0)
etime1 <- emr_date2time(1, 1, 2015, 23)
stime2 <- emr_date2time(1, 1, 2016, 0)
etime2 <- emr_date2time(1, 1, 2016, 23)
emr_extract("alcohol_level_track", iterator = data.frame(
stime = c(stime1, stime2),
etime = c(etime1, etime2)
))

Id-Time Intervals Iterator: *Id-Time intervals iterator* generates for each id points that cover
‘[’stime’, ’etime’]‘ time range as specified in *id-time intervals table* (see: Appendix). Each
time starts at the beginning of the time interval and runs to the end of it with a step of 1. That
being said the points that lie outside of ‘[stime, etime]‘ range are skipped.
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references
running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id
and time, and its reference is set to ‘-1‘

Beat Iterator: *Beat Iterator* generates a "time beat" at the given period for each id that appear
in ’patients.dob’ track. The period is given always in hours.
Example:
emr_extract("glucose_track", iterator=10, stime=1000, etime=2000)
This will create a beat iterator with a period of 10 hours starting at ‘stime‘ up until ‘etime‘ is
reached. If, for example, ‘stime‘ equals ‘1000‘ then the beat iterator will create for each id
iterator points at times: 1000, 1010, 1020, ...
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references
running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id
and time, and its reference is set to ‘-1‘.

Extended Beat Iterator: *Extended beat iterator* is as its name suggests a variation on the beat
iterator. It works by the same principle of creating time points with the given period however
instead of basing the times count on ‘stime‘ it accepts an additional parameter - a track or a
Id-Time Points table - that instructs what should be the initial time point for each of the ids.
The two parameters (period and mapping) should come in a list. Each id is required to appear
only once and if a certain id does not appear at all, it is skipped by the iterator.
Anyhow points that lie outside of ‘[stime, etime]‘ range are not generated.
Example:
Returns the maximal weight of patients at one year span starting from their birthdays
emr_vtrack.create("weight", "weight_track", func = "max", time.shift = c(0, year()))

emr_download_example_data 19

emr_extract("weight", iterator = list(year(), "birthday_track"), stime = 1000, etime = 2000)

Periodic Iterator: periodic iterator goes over every year/month. You can use it by running emr_monthly_iterator
or emr_yearly_iterator.
Example:
iter <- emr_yearly_iterator(emr_date2time(1, 1, 2002), emr_date2time(1, 1, 2017))
emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)
iter <- emr_monthly_iterator(emr_date2time(1, 1, 2002), n = 15)
emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)

Implicit Iterator: The iterator is set implicitly if its value remains ‘NULL‘ (which is the default).
In that case the track expression is analyzed and searched for track names. If all the track
variables or virtual track variables point to the same track, this track is used as a source for
a track iterator. If more then one track appears in the track expression, an error message is
printed out notifying ambiguity.

Revealing Current Iterator Time: During the evaluation of a track expression one can access a spe-
cially defined variable named ‘EMR_TIME‘ (Python: ‘TIME‘). This variable contains a vector
(‘numpy.ndarray‘ in Python) of current iterator times. The length of the vector matches the length
of the track variable (which is a vector too).
Note that some values in ‘EMR_TIME‘ might be set 0. Skip those intervals and the values of the
track variables at the corresponding indices.
Returns times of the current iterator as a day of month
emr_extract("emr_time2dayofmonth(EMR_TIME)", iterator = "sparse_track")

See Also

emr_cor, cut

Examples

emr_db.init_examples()
emr_dist("sparse_track", c(0, 15, 20, 30, 40, 50), keepref = TRUE)
emr_dist("sparse_track", c(0, 15, 20, 30, 40, 50), keepref = TRUE, dataframe = TRUE)

emr_download_example_data

Download example database

Description

Download an example database which was simulated to include an example of a typical EMR
database.

Usage

emr_download_example_data(dir = getwd(), temp_dir = tempdir())

20 emr_entries.get

Arguments

dir Directory to save the database to. Default: current working directory.

temp_dir Directory to save the temporary downloaded file to. Change if your system has
a small ‘/tmp“ directory

Value

None. The database is saved under the name ‘sample_db‘ in the specified directory.

Examples

emr_download_example_data()

emr_entries.get Get an entry

Description

Get an entry

Usage

emr_entries.get(key, db_dir = NULL)

Arguments

key The key of the entry to get

db_dir One or more database directories to reload entries from. If NULL - the first
database is used.

Value

The entry value. If the key does not exist, NULL is returned. For multiple databases, a named list
of database entries is returned.

Examples

emr_db.init_examples()
emr_entries.get("entry1")

emr_entries.get_all 21

emr_entries.get_all Get all entries

Description

Get all entries

Usage

emr_entries.get_all(db_dir = NULL)

Arguments

db_dir One or more database directories to reload entries from. If NULL - the first
database is used.

Value

A list of entries. For multiple databases, a named list of database entries is returned.

Examples

emr_db.init_examples()
emr_entries.get_all()

emr_entries.ls List entries

Description

List entries

Usage

emr_entries.ls(db_dir = NULL)

Arguments

db_dir One or more database directories to reload entries from. If NULL - the first
database is used.

Value

A vector of entry names. For multiple databases, a named list of database entries is returned.

22 emr_entries.rm

Examples

emr_db.init_examples()
emr_entries.ls()

emr_entries.reload Reload entries from disk

Description

Reload entries from disk

Usage

emr_entries.reload(db_dir = NULL)

Arguments

db_dir One or more database directories to reload entries from. If NULL - the first
database is used.

Value

None. If the entries were reloaded - the file timestamp is returned invisibly.

Examples

emr_db.init_examples()
emr_entries.reload()

emr_entries.rm Remove an entry

Description

Remove an entry

Usage

emr_entries.rm(key, db_dir = NULL)

Arguments

key The key of the entry to remove. If the key does not exist, nothing happens.

db_dir One or more database directories to reload entries from. If NULL - the first
database is used.

emr_entries.rm_all 23

Value

None

Examples

emr_db.init_examples()
emr_entries.rm("entry1")
emr_entries.ls()

emr_entries.rm_all Remove all entries

Description

Remove all entries

Usage

emr_entries.rm_all(db_dir = NULL)

Arguments

db_dir One or more database directories to reload entries from. If NULL - the first
database is used.

Value

None

Examples

emr_db.init_examples()
emr_entries.rm_all()

24 emr_extract

emr_entries.set Set an entry

Description

Set an entry

Usage

emr_entries.set(key, value, db_dir = NULL)

Arguments

key The key of the entry to set

value The value of the entry to set. This can be anything that can be serialized to
YAML

db_dir One or more database directories to reload entries from. If NULL - the first
database is used.

Value

None

Examples

emr_db.init_examples()
emr_entries.set("entry1", "new value")
emr_entries.get("entry1")

emr_extract Returns evaluated track expression

Description

Returns the result of track expressions evaluation for each of the iterator points.

Usage

emr_extract(
expr,
tidy = FALSE,
sort = FALSE,
names = NULL,
stime = NULL,

emr_extract 25

etime = NULL,
iterator = NULL,
keepref = FALSE,
filter = NULL

)

Arguments

expr vector of track expressions

tidy if ’TRUE’ result is returned in "tidy"" format

sort if ’TRUE’ result is sorted by id, time and reference

names names for the track expressions in the returned value. If ’NULL’ names are set
to the track expression themselves.

stime start time scope

etime end time scope

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expressions. See also ’iterator’ section.

keepref If ’TRUE’ references are preserved in the iterator.

filter Iterator filter.

Details

This function returns the result of track expressions evaluation for each of the iterator stops.

If ’tidy’ is ’TRUE’ the returned value is a set of ID-Time points with two additional columns named
’expr’ and ’value’. ’expr’ marks the track expression that produced the value. Rows with NaN
values are omitted from the tidy format.

If ’tidy’ is ’FALSE’ the returned value is a set of ID-Time points with an additional column for the
values of each of the track expressions.

If ’sort’ is ’TRUE’ the returned value is sorted by id, time and reference, otherwise the order is
not guaranteed especially for longer runs, when multitasking might be launched. Sorting requires
additional time, so it is switched off by default.

’names’ parameter sets the labels for the track expressions in the return value. If ’names’ is ’NULL’
the labels are set to the track expression themselves.

Value

A set of ID-Time points with additional columns depending on the value of ’tidy’ (see above).

iterator

There are a few types of iterators:

Track iterator: Track iterator returns the points (including the reference) from the specified track.
Track name is specified as a string. If ‘keepref=FALSE‘ the reference of each point is set to
‘-1‘
Example:

26 emr_extract

Returns the level of glucose one hour after the insulin shot was made
emr_vtrack.create("glucose", "glucose_track", func="avg", time.shift=1)
emr_extract("glucose", iterator="insulin_shot_track")

Id-Time Points Iterator: Id-Time points iterator generates points from an *id-time points table*.
If ‘keepref=FALSE‘ the reference of each point is set to ‘-1‘.
Example:

Returns the level of glucose one hour after the insulin shot was made
emr_vtrack.create("glucose", "glucose_track", func = "avg", time.shift = 1)
r <- emr_extract("insulin_shot_track") # <– implicit iterator is used here
emr_extract("glucose", iterator = r)

Ids Iterator: Ids iterator generates points with ids taken from an *ids table* and times that run
from ‘stime‘ to ‘etime‘ with a step of 1. If ‘keepref=TRUE‘ for each id-time pair the iterator
generates 255 points with references running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one
point is generated for the given id and time, and its reference is set to ‘-1‘.
Example:

stime <- emr_date2time(1, 1, 2016, 0)
etime <- emr_date2time(31, 12, 2016, 23)
emr_extract("glucose", iterator = data.frame(id = c(2, 5)), stime = stime, etime = etime)

Time Intervals Iterator: *Time intervals iterator* generates points for all the ids that appear in
’patients.dob’ track with times taken from a *time intervals table* (see: Appendix). Each time
starts at the beginning of the time interval and runs to the end of it with a step of 1. That being
said the points that lie outside of ‘[stime, etime]‘ range are skipped.
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references run-
ning from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id and
time, and its reference is set to ‘-1‘.
Example:
Returns the level of hangover for all patients the next day after New Year Eve for the years
2015 and 2016
stime1 <- emr_date2time(1, 1, 2015, 0)
etime1 <- emr_date2time(1, 1, 2015, 23)
stime2 <- emr_date2time(1, 1, 2016, 0)
etime2 <- emr_date2time(1, 1, 2016, 23)
emr_extract("alcohol_level_track", iterator = data.frame(
stime = c(stime1, stime2),
etime = c(etime1, etime2)
))

Id-Time Intervals Iterator: *Id-Time intervals iterator* generates for each id points that cover
‘[’stime’, ’etime’]‘ time range as specified in *id-time intervals table* (see: Appendix). Each
time starts at the beginning of the time interval and runs to the end of it with a step of 1. That
being said the points that lie outside of ‘[stime, etime]‘ range are skipped.
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references

emr_extract 27

running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id
and time, and its reference is set to ‘-1‘

Beat Iterator: *Beat Iterator* generates a "time beat" at the given period for each id that appear
in ’patients.dob’ track. The period is given always in hours.
Example:
emr_extract("glucose_track", iterator=10, stime=1000, etime=2000)
This will create a beat iterator with a period of 10 hours starting at ‘stime‘ up until ‘etime‘ is
reached. If, for example, ‘stime‘ equals ‘1000‘ then the beat iterator will create for each id
iterator points at times: 1000, 1010, 1020, ...
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references
running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id
and time, and its reference is set to ‘-1‘.

Extended Beat Iterator: *Extended beat iterator* is as its name suggests a variation on the beat
iterator. It works by the same principle of creating time points with the given period however
instead of basing the times count on ‘stime‘ it accepts an additional parameter - a track or a
Id-Time Points table - that instructs what should be the initial time point for each of the ids.
The two parameters (period and mapping) should come in a list. Each id is required to appear
only once and if a certain id does not appear at all, it is skipped by the iterator.
Anyhow points that lie outside of ‘[stime, etime]‘ range are not generated.
Example:
Returns the maximal weight of patients at one year span starting from their birthdays
emr_vtrack.create("weight", "weight_track", func = "max", time.shift = c(0, year()))
emr_extract("weight", iterator = list(year(), "birthday_track"), stime = 1000, etime = 2000)

Periodic Iterator: periodic iterator goes over every year/month. You can use it by running emr_monthly_iterator
or emr_yearly_iterator.
Example:
iter <- emr_yearly_iterator(emr_date2time(1, 1, 2002), emr_date2time(1, 1, 2017))
emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)
iter <- emr_monthly_iterator(emr_date2time(1, 1, 2002), n = 15)
emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)

Implicit Iterator: The iterator is set implicitly if its value remains ‘NULL‘ (which is the default).
In that case the track expression is analyzed and searched for track names. If all the track
variables or virtual track variables point to the same track, this track is used as a source for
a track iterator. If more then one track appears in the track expression, an error message is
printed out notifying ambiguity.

Revealing Current Iterator Time: During the evaluation of a track expression one can access a spe-
cially defined variable named ‘EMR_TIME‘ (Python: ‘TIME‘). This variable contains a vector
(‘numpy.ndarray‘ in Python) of current iterator times. The length of the vector matches the length
of the track variable (which is a vector too).
Note that some values in ‘EMR_TIME‘ might be set 0. Skip those intervals and the values of the
track variables at the corresponding indices.
Returns times of the current iterator as a day of month
emr_extract("emr_time2dayofmonth(EMR_TIME)", iterator = "sparse_track")

28 emr_filter.attr.src

See Also

emr_screen

Examples

emr_db.init_examples()
emr_extract("dense_track", stime = 1, etime = 3)

emr_filter.attr.src Get or set attributes of a named filter

Description

Get or set attributes of a named filter.

Usage

emr_filter.attr.src(filter, src)

emr_filter.attr.keepref(filter, keepref)

emr_filter.attr.time.shift(filter, time.shift)

emr_filter.attr.val(filter, val)

emr_filter.attr.expiration(filter, expiration)

Arguments

filter filter name.
src, keepref, time.shift, val, expiration

filter attributes.

Details

When only ’filter’ argument is used in the call, the functions return the corresponding attribute of
the named filter. Otherwise a new attribute value is set.

Note: since inter-dependency exists between certain attributes, the correctness of the attributes as a
whole can only be verified when the named filter is applied to a track expression.

For more information about the valid attribute values please refer to the documentation of ’emr_filter.create’.

Value

None.

See Also

emr_filter.create

emr_filter.clear 29

Examples

emr_db.init_examples()
emr_filter.create("f1", "dense_track", time.shift = c(2, 4))
emr_filter.attr.src("f1")
emr_filter.attr.src("f1", "sparse_track")
emr_filter.attr.src("f1")

emr_filter.clear Clear all filters from the current environment

Description

Clear all filters from the current environment

Usage

emr_filter.clear()

Value

None.

Examples

emr_db.init_examples()
emr_filter.create("f1", "dense_track", time.shift = c(2, 4))
emr_filter.ls()
emr_filter.clear()
emr_filter.ls()

emr_filter.create Creates a new named filter

Description

Creates a new named filter.

Usage

emr_filter.create(
filter,
src,
keepref = FALSE,
time.shift = NULL,
val = NULL,
expiration = NULL,
operator = "="

)

30 emr_filter.create

Arguments

filter filter name. If NULL - a name would be generated automatically using emr_filter.name.
src source (track name, virtual track name or id-time table). Can be a vector of track

names.
keepref ’TRUE’ or ’FALSE’
time.shift time shift and expansion for iterator time
val selected values
expiration expiration period
operator operator for filtering. Accepts one of: "=", "<", "<=", ">", ">="

Details

This function creates a new named filter.

’src’ can be either a track name, a virtual track name, or an id-time table - data frame with the first
columns named "id", "time" and an optional "ref".

If ’val’ is not ’NULL’, the time window of the filter is required to contain at least one value from
the vector of ’val’ which passes the ’operator’ (see below).

’val’ is allowed to be used only when ’src’ is a name of a track. When val is specified, the filter will
filter the i.d, time points by applying the ’operator’ argument on the value of the point.

If ’expiration’ is not ’NULL’ and the filter window contains a value at time ’t’, the existence of
previous values in the time window of [t-expiration, t-1] (aka: "expiration window") is checked. If
no such values are found in the expiration window, the filter returns ’TRUE’, otherwise ’FALSE’.

’expiration’ is allowed to be used only when ’src’ is a name of a categorical track and ’keepref’ is
’FALSE’.

’operator’ corresponds to the ’val’ argument. The point passes the filter if the point’s value passes
the operator. For example if the point’s value is 4, the operator is "<" and val is 5, the expression
evaluated is 4 < 5 (pass). When ’operator’ is not "=", ’vals’ must exist, and be of length 1.

If both ’val’ and ’expiration’ are not ’NULL’ then only values from ’val’ vector are checked both in
time window and expiration window.

Note: ’time.shift’ can be used only when ’keepref’ is ’FALSE’. Note: A zero length vector is
interpreted by R as NULL, so val=c() would create a filter which returns all the values of src

Value

Name of the filter (invisibly, if filter name wasn’t generated automatically, otherwise - explicitly)

See Also

emr_filter.attr.src, emr_filter.ls, emr_filter.exists, emr_filter.rm, emr_filter.create_from_name

Examples

emr_db.init_examples()
emr_filter.create("f1", "dense_track", time.shift = c(2, 4))
emr_filter.create("f2", "dense_track", keepref = TRUE)
emr_extract("sparse_track", filter = "!f1 & f2")

emr_filter.create_from_name 31

emr_filter.create_from_name

Create a filter from an automatically generated name

Description

Create a filter from an automatically generated name

Usage

emr_filter.create_from_name(filter)

Arguments

filter name of a filter automatically generated by emr_filter.name. Can be a vector
of filter names.

Value

name of the filter

See Also

emr_filter.create, emr_filter.create_from_name

Examples

emr_db.init_examples()
name <- emr_filter.name("dense_track", time.shift = c(2, 4))
emr_filter.create_from_name(name)

emr_filter.exists Checks whether the named filter exists

Description

Checks whether the named filter exists.

Usage

emr_filter.exists(filter)

Arguments

filter filter name

32 emr_filter.info

Details

This function checks whether the named filter exists.

Value

’TRUE’, if the named filter exists, otherwise ’FALSE’.

See Also

emr_filter.create, emr_filter.ls

Examples

emr_db.init_examples()
emr_filter.create("f1", "dense_track", time.shift = c(2, 4))
emr_filter.exists("f1")

emr_filter.info Returns the definition of a named filter

Description

Returns the definition of a named filter.

Usage

emr_filter.info(filter)

Arguments

filter filter name

Details

This function returns the internal representation of a named filter.

Value

Internal representation of a named filter.

See Also

emr_filter.create

Examples

emr_db.init_examples()
emr_filter.create("f1", "dense_track", time.shift = c(2, 4))
emr_filter.info("f1")

emr_filter.ls 33

emr_filter.ls Returns a list of named filters

Description

Returns a list of named filters.

Usage

emr_filter.ls(
pattern = "",
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE

)

Arguments

pattern, ignore.case, perl, fixed, useBytes
see ’grep’

Details

This function returns a list of named filters that exist in current R environment that match the pattern
(see ’grep’). If called without any arguments all named filters are returned.

Value

An array that contains the names of filters. If no filter was found, character(0) would be returned.

See Also

grep, emr_filter.exists, emr_filter.create, emr_filter.rm

Examples

emr_db.init_examples()
emr_filter.create("f1", "dense_track", time.shift = c(2, 4))
emr_filter.create("f2", "dense_track", keepref = TRUE)
emr_filter.ls()
emr_filter.ls("*2")

34 emr_filter.name

emr_filter.name Generate a default name for a naryn filter

Description

Generate a default name for a naryn filter

Usage

emr_filter.name(
src,
keepref = FALSE,
time.shift = NULL,
val = NULL,
expiration = NULL,
operator = "="

)

Arguments

src source (track name, virtual track name or id-time table). Can be a vector of track
names.

keepref ’TRUE’ or ’FALSE’

time.shift time shift and expansion for iterator time

val selected values

expiration expiration period

operator operator for filtering. Accepts one of: "=", "<", "<=", ">", ">="

Details

Given filter parameters, generate a name with the following format: "f_(src).kr(keepref).vals_(val).ts_(time.shift).exp_(expiration).op_(operator)"
Where for ’val’ and ’time.shift’ the values are separated by an underscore.

If time.shift, val or expiration are NULL - their section would not appear in the generated name.

Value

a default name for the filter

See Also

emr_filter.create

Examples

emr_db.init_examples()
emr_filter.name("dense_track", time.shift = c(2, 4))

emr_filter.rm 35

emr_filter.rm Deletes a named filter

Description

Deletes a named filter.

Usage

emr_filter.rm(filter)

Arguments

filter filter name

Details

This function deletes a named filter from current R environment.

Value

None.

See Also

emr_filter.create, emr_filter.ls

Examples

emr_db.init_examples()
emr_filter.create("f1", "dense_track", time.shift = c(2, 4))
emr_filter.create("f2", "dense_track", keepref = TRUE)
emr_filter.ls()
emr_filter.rm("f1")
emr_filter.ls()

emr_filters.info Returns the filter definition of named filters given a filter expression

Description

Returns the filter definition of named filters given a filter expression

Usage

emr_filters.info(filter)

36 emr_ids_coverage

Arguments

filter a filter expression

Value

a list of named filters

See Also

emr_filter.info

Examples

emr_db.init_examples()
emr_filter.create("f1", "dense_track", time.shift = c(2, 4))
emr_filter.create("f2", "dense_track", time.shift = c(2, 4))
emr_filter.create("f3", "dense_track", time.shift = c(2, 4))
emr_filters.info("f1 | (f2 & f3)")

emr_ids_coverage Returns ids coverage per track

Description

Returns ids coverage per track.

Usage

emr_ids_coverage(ids, tracks, stime = NULL, etime = NULL, filter = NULL)

Arguments

ids track name or Ids Table

tracks a vector of track names

stime start time scope

etime end time scope

filter iterator filter

Details

This function accepts a set of ids and a vector of categorical tracks. For each track it calculates how
many ids appear in the track. Each id is counted only once.

Ids can originate from a track or be provided within Ids Table.

Note: The internal iterator that runs over each track is defined with ’keepref=TRUE’.

emr_ids_vals_coverage 37

Value

A vector containing the ids count for each track.

See Also

emr_ids_vals_coverage, emr_track.ids, emr_dist

Examples

emr_db.init_examples()
emr_ids_coverage(data.frame(id = c(15, 24, 27)), "categorical_track")

emr_ids_vals_coverage Returns ids coverage per value track

Description

Returns ids coverage per value track.

Usage

emr_ids_vals_coverage(ids, tracks, stime = NULL, etime = NULL, filter = NULL)

Arguments

ids track name or Ids Table

tracks a vector of track names

stime start time scope

etime end time scope

filter iterator filter

Details

This function accepts a set of ids and a vector of categorical tracks. For each track value it calculates
how many ids share this value. Each id is counted only once. A data frame with 3 columns ’track’,
’val’ and ’count’ is returned.

Ids can originate from a track or be provided within Ids Table.

Note: The internal iterator that runs over each track is defined with ’keepref=TRUE’.

Value

A data frame containing the number of ids for each track value.

See Also

emr_ids_coverage, emr_track.ids, emr_dist

38 emr_monthly_iterator

Examples

emr_db.init_examples()
emr_ids_vals_coverage(data.frame(id = c(15, 24, 27)), "categorical_track")

emr_monthly_iterator Create an iterator that goes every year/month

Description

Create an iterator that goes every year/month, from stime. If etime is set, the iterator would go
every year/month until the last point which is <= etime. If month or years is set, the iterator would
be set for every year/month ntimes. If both parameters are set, the iterator would go from etime
until the early between n times and etime.

Usage

emr_monthly_iterator(stime, etime = NULL, n = NULL)

emr_yearly_iterator(stime, etime = NULL, n = NULL)

Arguments

stime the date of the first point in machine format (use emr_date2time)

etime end of time scope (can be NULL if months parameter is set)

n number of months / years

Value

an id time data frame that can be used as an iterator

Examples

iter <- emr_monthly_iterator(emr_date2time(1, 1, 2002), emr_date2time(1, 1, 2017))
note that the examples database doesn't include actual dates, so the results are empty
emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)

iter <- emr_monthly_iterator(emr_date2time(1, 1, 2002), n = 15)
emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)

emr_quantiles 39

emr_quantiles Calculates quantiles of a track expression

Description

Calculates quantiles of a track expression for the given percentiles.

Usage

emr_quantiles(
expr,
percentiles = 0.5,
stime = NULL,
etime = NULL,
iterator = NULL,
keepref = FALSE,
filter = NULL

)

Arguments

expr track expression

percentiles an array of percentiles of quantiles in [0, 1] range

stime start time scope

etime end time scope

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expression. See also ’iterator’ section.

keepref If ’TRUE’ references are preserved in the iterator.

filter Iterator filter.

Details

This function calculates quantiles for the given percentiles.

If data size exceeds the limit (see: ’getOption(emr_max.data.size)’), the data is randomly sampled
to fit the limit. A warning message is generated then.

Value

An array that represent quantiles.

40 emr_quantiles

iterator

There are a few types of iterators:

Track iterator: Track iterator returns the points (including the reference) from the specified track.
Track name is specified as a string. If ‘keepref=FALSE‘ the reference of each point is set to
‘-1‘
Example:

Returns the level of glucose one hour after the insulin shot was made
emr_vtrack.create("glucose", "glucose_track", func="avg", time.shift=1)
emr_extract("glucose", iterator="insulin_shot_track")

Id-Time Points Iterator: Id-Time points iterator generates points from an *id-time points table*.
If ‘keepref=FALSE‘ the reference of each point is set to ‘-1‘.
Example:

Returns the level of glucose one hour after the insulin shot was made
emr_vtrack.create("glucose", "glucose_track", func = "avg", time.shift = 1)
r <- emr_extract("insulin_shot_track") # <– implicit iterator is used here
emr_extract("glucose", iterator = r)

Ids Iterator: Ids iterator generates points with ids taken from an *ids table* and times that run
from ‘stime‘ to ‘etime‘ with a step of 1. If ‘keepref=TRUE‘ for each id-time pair the iterator
generates 255 points with references running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one
point is generated for the given id and time, and its reference is set to ‘-1‘.
Example:

stime <- emr_date2time(1, 1, 2016, 0)
etime <- emr_date2time(31, 12, 2016, 23)
emr_extract("glucose", iterator = data.frame(id = c(2, 5)), stime = stime, etime = etime)

Time Intervals Iterator: *Time intervals iterator* generates points for all the ids that appear in
’patients.dob’ track with times taken from a *time intervals table* (see: Appendix). Each time
starts at the beginning of the time interval and runs to the end of it with a step of 1. That being
said the points that lie outside of ‘[stime, etime]‘ range are skipped.
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references run-
ning from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id and
time, and its reference is set to ‘-1‘.
Example:
Returns the level of hangover for all patients the next day after New Year Eve for the years
2015 and 2016
stime1 <- emr_date2time(1, 1, 2015, 0)
etime1 <- emr_date2time(1, 1, 2015, 23)
stime2 <- emr_date2time(1, 1, 2016, 0)
etime2 <- emr_date2time(1, 1, 2016, 23)
emr_extract("alcohol_level_track", iterator = data.frame(
stime = c(stime1, stime2),
etime = c(etime1, etime2)

emr_quantiles 41

))

Id-Time Intervals Iterator: *Id-Time intervals iterator* generates for each id points that cover
‘[’stime’, ’etime’]‘ time range as specified in *id-time intervals table* (see: Appendix). Each
time starts at the beginning of the time interval and runs to the end of it with a step of 1. That
being said the points that lie outside of ‘[stime, etime]‘ range are skipped.
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references
running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id
and time, and its reference is set to ‘-1‘

Beat Iterator: *Beat Iterator* generates a "time beat" at the given period for each id that appear
in ’patients.dob’ track. The period is given always in hours.
Example:
emr_extract("glucose_track", iterator=10, stime=1000, etime=2000)
This will create a beat iterator with a period of 10 hours starting at ‘stime‘ up until ‘etime‘ is
reached. If, for example, ‘stime‘ equals ‘1000‘ then the beat iterator will create for each id
iterator points at times: 1000, 1010, 1020, ...
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references
running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id
and time, and its reference is set to ‘-1‘.

Extended Beat Iterator: *Extended beat iterator* is as its name suggests a variation on the beat
iterator. It works by the same principle of creating time points with the given period however
instead of basing the times count on ‘stime‘ it accepts an additional parameter - a track or a
Id-Time Points table - that instructs what should be the initial time point for each of the ids.
The two parameters (period and mapping) should come in a list. Each id is required to appear
only once and if a certain id does not appear at all, it is skipped by the iterator.
Anyhow points that lie outside of ‘[stime, etime]‘ range are not generated.
Example:
Returns the maximal weight of patients at one year span starting from their birthdays
emr_vtrack.create("weight", "weight_track", func = "max", time.shift = c(0, year()))
emr_extract("weight", iterator = list(year(), "birthday_track"), stime = 1000, etime = 2000)

Periodic Iterator: periodic iterator goes over every year/month. You can use it by running emr_monthly_iterator
or emr_yearly_iterator.
Example:
iter <- emr_yearly_iterator(emr_date2time(1, 1, 2002), emr_date2time(1, 1, 2017))
emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)
iter <- emr_monthly_iterator(emr_date2time(1, 1, 2002), n = 15)
emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)

Implicit Iterator: The iterator is set implicitly if its value remains ‘NULL‘ (which is the default).
In that case the track expression is analyzed and searched for track names. If all the track
variables or virtual track variables point to the same track, this track is used as a source for
a track iterator. If more then one track appears in the track expression, an error message is
printed out notifying ambiguity.

Revealing Current Iterator Time: During the evaluation of a track expression one can access a spe-
cially defined variable named ‘EMR_TIME‘ (Python: ‘TIME‘). This variable contains a vector

42 emr_screen

(‘numpy.ndarray‘ in Python) of current iterator times. The length of the vector matches the length
of the track variable (which is a vector too).
Note that some values in ‘EMR_TIME‘ might be set 0. Skip those intervals and the values of the
track variables at the corresponding indices.
Returns times of the current iterator as a day of month
emr_extract("emr_time2dayofmonth(EMR_TIME)", iterator = "sparse_track")

See Also

emr_extract

Examples

emr_db.init_examples()
emr_quantiles("sparse_track", c(0.1, 0.6, 0.8))

emr_screen Finds Id-Time points that match track expression

Description

Finds all patient-time pairs where track expression is ’TRUE’.

Usage

emr_screen(
expr,
sort = FALSE,
stime = NULL,
etime = NULL,
iterator = NULL,
keepref = FALSE,
filter = NULL

)

Arguments

expr logical track expression

sort if ’TRUE’ result is sorted by id, time and reference

stime start time scope

etime end time scope

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expression. See also ’iterator’ section.

keepref If ’TRUE’ references are preserved in the iterator.

filter Iterator filter.

emr_screen 43

Details

This function finds all Id-Time points where track expression’s value is ’TRUE’.

If ’sort’ is ’TRUE’ the returned value is sorted by id, time and reference, otherwise the order is
not guaranteed especially for longer runs, when multitasking might be launched. Sorting requires
additional time, so it is switched off by default.

Value

A set of Id-Time points that match track expression.

iterator

There are a few types of iterators:

Track iterator: Track iterator returns the points (including the reference) from the specified track.
Track name is specified as a string. If ‘keepref=FALSE‘ the reference of each point is set to
‘-1‘
Example:

Returns the level of glucose one hour after the insulin shot was made
emr_vtrack.create("glucose", "glucose_track", func="avg", time.shift=1)
emr_extract("glucose", iterator="insulin_shot_track")

Id-Time Points Iterator: Id-Time points iterator generates points from an *id-time points table*.
If ‘keepref=FALSE‘ the reference of each point is set to ‘-1‘.
Example:

Returns the level of glucose one hour after the insulin shot was made
emr_vtrack.create("glucose", "glucose_track", func = "avg", time.shift = 1)
r <- emr_extract("insulin_shot_track") # <– implicit iterator is used here
emr_extract("glucose", iterator = r)

Ids Iterator: Ids iterator generates points with ids taken from an *ids table* and times that run
from ‘stime‘ to ‘etime‘ with a step of 1. If ‘keepref=TRUE‘ for each id-time pair the iterator
generates 255 points with references running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one
point is generated for the given id and time, and its reference is set to ‘-1‘.
Example:

stime <- emr_date2time(1, 1, 2016, 0)
etime <- emr_date2time(31, 12, 2016, 23)
emr_extract("glucose", iterator = data.frame(id = c(2, 5)), stime = stime, etime = etime)

Time Intervals Iterator: *Time intervals iterator* generates points for all the ids that appear in
’patients.dob’ track with times taken from a *time intervals table* (see: Appendix). Each time
starts at the beginning of the time interval and runs to the end of it with a step of 1. That being
said the points that lie outside of ‘[stime, etime]‘ range are skipped.
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references run-
ning from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id and

44 emr_screen

time, and its reference is set to ‘-1‘.
Example:
Returns the level of hangover for all patients the next day after New Year Eve for the years
2015 and 2016
stime1 <- emr_date2time(1, 1, 2015, 0)
etime1 <- emr_date2time(1, 1, 2015, 23)
stime2 <- emr_date2time(1, 1, 2016, 0)
etime2 <- emr_date2time(1, 1, 2016, 23)
emr_extract("alcohol_level_track", iterator = data.frame(
stime = c(stime1, stime2),
etime = c(etime1, etime2)
))

Id-Time Intervals Iterator: *Id-Time intervals iterator* generates for each id points that cover
‘[’stime’, ’etime’]‘ time range as specified in *id-time intervals table* (see: Appendix). Each
time starts at the beginning of the time interval and runs to the end of it with a step of 1. That
being said the points that lie outside of ‘[stime, etime]‘ range are skipped.
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references
running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id
and time, and its reference is set to ‘-1‘

Beat Iterator: *Beat Iterator* generates a "time beat" at the given period for each id that appear
in ’patients.dob’ track. The period is given always in hours.
Example:
emr_extract("glucose_track", iterator=10, stime=1000, etime=2000)
This will create a beat iterator with a period of 10 hours starting at ‘stime‘ up until ‘etime‘ is
reached. If, for example, ‘stime‘ equals ‘1000‘ then the beat iterator will create for each id
iterator points at times: 1000, 1010, 1020, ...
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references
running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id
and time, and its reference is set to ‘-1‘.

Extended Beat Iterator: *Extended beat iterator* is as its name suggests a variation on the beat
iterator. It works by the same principle of creating time points with the given period however
instead of basing the times count on ‘stime‘ it accepts an additional parameter - a track or a
Id-Time Points table - that instructs what should be the initial time point for each of the ids.
The two parameters (period and mapping) should come in a list. Each id is required to appear
only once and if a certain id does not appear at all, it is skipped by the iterator.
Anyhow points that lie outside of ‘[stime, etime]‘ range are not generated.
Example:
Returns the maximal weight of patients at one year span starting from their birthdays
emr_vtrack.create("weight", "weight_track", func = "max", time.shift = c(0, year()))
emr_extract("weight", iterator = list(year(), "birthday_track"), stime = 1000, etime = 2000)

Periodic Iterator: periodic iterator goes over every year/month. You can use it by running emr_monthly_iterator
or emr_yearly_iterator.
Example:
iter <- emr_yearly_iterator(emr_date2time(1, 1, 2002), emr_date2time(1, 1, 2017))
emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)
iter <- emr_monthly_iterator(emr_date2time(1, 1, 2002), n = 15)

emr_summary 45

emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)

Implicit Iterator: The iterator is set implicitly if its value remains ‘NULL‘ (which is the default).
In that case the track expression is analyzed and searched for track names. If all the track
variables or virtual track variables point to the same track, this track is used as a source for
a track iterator. If more then one track appears in the track expression, an error message is
printed out notifying ambiguity.

Revealing Current Iterator Time: During the evaluation of a track expression one can access a spe-
cially defined variable named ‘EMR_TIME‘ (Python: ‘TIME‘). This variable contains a vector
(‘numpy.ndarray‘ in Python) of current iterator times. The length of the vector matches the length
of the track variable (which is a vector too).
Note that some values in ‘EMR_TIME‘ might be set 0. Skip those intervals and the values of the
track variables at the corresponding indices.
Returns times of the current iterator as a day of month
emr_extract("emr_time2dayofmonth(EMR_TIME)", iterator = "sparse_track")

See Also

emr_extract

Examples

emr_db.init_examples()
emr_screen("sparse_track == 13 | dense_track < 80",

iterator = "sparse_track", keepref = TRUE
)

emr_summary Calculates summary statistics of track expression

Description

Calculates summary statistics of track expression.

Usage

emr_summary(
expr,
stime = NULL,
etime = NULL,
iterator = NULL,
keepref = FALSE,
filter = NULL

)

46 emr_summary

Arguments

expr track expression.

stime start time scope.

etime end time scope.

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expressions. See also ’iterator’ section.

keepref If ’TRUE’ references are preserved in the iterator.

filter Iterator filter.

Details

This function returns summary statistics of a track expression: total number of values, number of
NaN values, min, max, sum, mean and standard deviation of the values.

Value

An array that represents summary statistics.

iterator

There are a few types of iterators:

Track iterator: Track iterator returns the points (including the reference) from the specified track.
Track name is specified as a string. If ‘keepref=FALSE‘ the reference of each point is set to
‘-1‘
Example:

Returns the level of glucose one hour after the insulin shot was made
emr_vtrack.create("glucose", "glucose_track", func="avg", time.shift=1)
emr_extract("glucose", iterator="insulin_shot_track")

Id-Time Points Iterator: Id-Time points iterator generates points from an *id-time points table*.
If ‘keepref=FALSE‘ the reference of each point is set to ‘-1‘.
Example:

Returns the level of glucose one hour after the insulin shot was made
emr_vtrack.create("glucose", "glucose_track", func = "avg", time.shift = 1)
r <- emr_extract("insulin_shot_track") # <– implicit iterator is used here
emr_extract("glucose", iterator = r)

Ids Iterator: Ids iterator generates points with ids taken from an *ids table* and times that run
from ‘stime‘ to ‘etime‘ with a step of 1. If ‘keepref=TRUE‘ for each id-time pair the iterator
generates 255 points with references running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one
point is generated for the given id and time, and its reference is set to ‘-1‘.
Example:

stime <- emr_date2time(1, 1, 2016, 0)

emr_summary 47

etime <- emr_date2time(31, 12, 2016, 23)
emr_extract("glucose", iterator = data.frame(id = c(2, 5)), stime = stime, etime = etime)

Time Intervals Iterator: *Time intervals iterator* generates points for all the ids that appear in
’patients.dob’ track with times taken from a *time intervals table* (see: Appendix). Each time
starts at the beginning of the time interval and runs to the end of it with a step of 1. That being
said the points that lie outside of ‘[stime, etime]‘ range are skipped.
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references run-
ning from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id and
time, and its reference is set to ‘-1‘.
Example:
Returns the level of hangover for all patients the next day after New Year Eve for the years
2015 and 2016
stime1 <- emr_date2time(1, 1, 2015, 0)
etime1 <- emr_date2time(1, 1, 2015, 23)
stime2 <- emr_date2time(1, 1, 2016, 0)
etime2 <- emr_date2time(1, 1, 2016, 23)
emr_extract("alcohol_level_track", iterator = data.frame(
stime = c(stime1, stime2),
etime = c(etime1, etime2)
))

Id-Time Intervals Iterator: *Id-Time intervals iterator* generates for each id points that cover
‘[’stime’, ’etime’]‘ time range as specified in *id-time intervals table* (see: Appendix). Each
time starts at the beginning of the time interval and runs to the end of it with a step of 1. That
being said the points that lie outside of ‘[stime, etime]‘ range are skipped.
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references
running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id
and time, and its reference is set to ‘-1‘

Beat Iterator: *Beat Iterator* generates a "time beat" at the given period for each id that appear
in ’patients.dob’ track. The period is given always in hours.
Example:
emr_extract("glucose_track", iterator=10, stime=1000, etime=2000)
This will create a beat iterator with a period of 10 hours starting at ‘stime‘ up until ‘etime‘ is
reached. If, for example, ‘stime‘ equals ‘1000‘ then the beat iterator will create for each id
iterator points at times: 1000, 1010, 1020, ...
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references
running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id
and time, and its reference is set to ‘-1‘.

Extended Beat Iterator: *Extended beat iterator* is as its name suggests a variation on the beat
iterator. It works by the same principle of creating time points with the given period however
instead of basing the times count on ‘stime‘ it accepts an additional parameter - a track or a
Id-Time Points table - that instructs what should be the initial time point for each of the ids.
The two parameters (period and mapping) should come in a list. Each id is required to appear
only once and if a certain id does not appear at all, it is skipped by the iterator.
Anyhow points that lie outside of ‘[stime, etime]‘ range are not generated.
Example:
Returns the maximal weight of patients at one year span starting from their birthdays

48 emr_time

emr_vtrack.create("weight", "weight_track", func = "max", time.shift = c(0, year()))
emr_extract("weight", iterator = list(year(), "birthday_track"), stime = 1000, etime = 2000)

Periodic Iterator: periodic iterator goes over every year/month. You can use it by running emr_monthly_iterator
or emr_yearly_iterator.
Example:
iter <- emr_yearly_iterator(emr_date2time(1, 1, 2002), emr_date2time(1, 1, 2017))
emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)
iter <- emr_monthly_iterator(emr_date2time(1, 1, 2002), n = 15)
emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)

Implicit Iterator: The iterator is set implicitly if its value remains ‘NULL‘ (which is the default).
In that case the track expression is analyzed and searched for track names. If all the track
variables or virtual track variables point to the same track, this track is used as a source for
a track iterator. If more then one track appears in the track expression, an error message is
printed out notifying ambiguity.

Revealing Current Iterator Time: During the evaluation of a track expression one can access a spe-
cially defined variable named ‘EMR_TIME‘ (Python: ‘TIME‘). This variable contains a vector
(‘numpy.ndarray‘ in Python) of current iterator times. The length of the vector matches the length
of the track variable (which is a vector too).
Note that some values in ‘EMR_TIME‘ might be set 0. Skip those intervals and the values of the
track variables at the corresponding indices.
Returns times of the current iterator as a day of month
emr_extract("emr_time2dayofmonth(EMR_TIME)", iterator = "sparse_track")

See Also

emr_track.info

Examples

emr_db.init_examples()
emr_summary("sparse_track")

emr_time Convert time periods to internal time format

Description

Convert time periods to internal time format

emr_time 49

Usage

emr_time(days = 0, months = 0, years = 0, hours = 0)

hours(n)

hour()

days(n)

day()

weeks(n)

week()

day()

months(n)

month()

years(n)

year()

Arguments

days number of days

months number of months

years number of years

hours number of hours

n number of days/weeks/months/years/hours

Details

emr_time converts a generic number of years, months day and hours to the internal naryn machine
format (which is hours).

year, years, month, months, week, weeks, day, days, hour, hours are other convenience functions
to get a time period explicitly.

Value

Machine time format (number of hours)

Examples

emr_time(5) # 5 days

50 emr_time2char

emr_time(months = 4) # 4 months
emr_time(2, 4, 1) # 1 year, 4 months and 2 days

year() # 1 year
years(5) # 5 years
month() # 1 month
months(5) # 5 months
day() # 1 day
days(9) # 9 days
week() # 1 week
weeks(2) # 2 weeks
hour() # 1 hour
hours(5) # 5 hours

emr_time2char Convert time to character format

Description

This function converts a given time value to a character format in the form of "

Usage

emr_time2char(time, show_hour = FALSE)

emr_char2time(char)

Arguments

time The time value to be converted.

show_hour Logical value indicating whether to include the hour in the output. Default is
FALSE.

char A character string to be converted to EMR time.

Value

A character string representing the converted time value.

Examples

30 January, 1938, 6:00 - birthday of Islam Karimov
t1 <- emr_date2time(30, 1, 1938, 6)
September 2, 2016, 7:00 - death of Islam Karimov
t2 <- emr_date2time(2, 9, 2016, 7)

emr_time2char(c(t1, t2))
emr_time2char(c(t1, t2), show_hour = TRUE)

emr_char2time(emr_time2char(c(t1, t2), show_hour = TRUE))

emr_time2date 51

Note that when show_hour = FALSE, the hour is set to 0
and therefore the results would be different from the original time values
emr_char2time(emr_time2char(c(t1, t2)))

emr_time2date Convert from internal time to year, month, day, hour

Description

Convert from internal time to year, month, day, hour

Usage

emr_time2date(time)

Arguments

time vector of times in internal format

Value

a data frame with columns named ’year’, ’month’, ’day’ and ’hour’

Examples

emr_db.init_examples()

30 January, 1938, 6:00 - birthday of Islam Karimov
t1 <- emr_date2time(30, 1, 1938, 6)
September 2, 2016, 7:00 - death of Islam Karimov
t2 <- emr_date2time(2, 9, 2016, 7)
emr_time2date(c(t1, t2))

emr_time2dayofmonth Converts time from internal format to a day of month

Description

Converts time from internal format to a day of month.

Usage

emr_time2dayofmonth(time)

52 emr_time2hour

Arguments

time vector of times in internal format

Details

This function converts time from internal format to a day of month in [1, 31] range.

Value

Vector of converted times. NA values in the vector would be returned as NA’s.

See Also

emr_time2hour, emr_time2month, emr_time2year, emr_date2time

Examples

emr_db.init_examples()

30 January, 1938, 6:00 - birthday of Islam Karimov
t <- emr_date2time(30, 1, 1938, 6)
emr_time2hour(t)
emr_time2dayofmonth(t)
emr_time2month(t)
emr_time2year(t)

emr_time2hour Converts time from internal format to an hour

Description

Converts time from internal format to an hour.

Usage

emr_time2hour(time)

Arguments

time vector of times in internal format

Details

This function converts time from internal format to an hour in [0, 23] range.

Value

Vector of converted times. NA values in the vector would be returned as NA’s.

emr_time2month 53

See Also

emr_time2dayofmonth, emr_time2month, emr_time2year, emr_date2time

Examples

emr_db.init_examples()

30 January, 1938, 6:00 - birthday of Islam Karimov
t <- emr_date2time(30, 1, 1938, 6)
emr_time2hour(t)
emr_time2dayofmonth(t)
emr_time2month(t)
emr_time2year(t)

emr_time2month Converts time from internal format to a month

Description

Converts time from internal format to a month.

Usage

emr_time2month(time)

Arguments

time vector of times in internal format

Details

This function converts time from internal format to a month in [1, 12] range.

Value

Vector of converted times. NA values in the vector would be returned as NA’s.

See Also

emr_time2hour, emr_time2dayofmonth, emr_time2year, emr_date2time

54 emr_time2posix

Examples

emr_db.init_examples()

30 January, 1938, 6:00 - birthday of Islam Karimov
t <- emr_date2time(30, 1, 1938, 6)
emr_time2hour(t)
emr_time2dayofmonth(t)
emr_time2month(t)
emr_time2year(t)

emr_time2posix Convert EMR time to POSIXct

Description

These function converts EMR time to POSIXct format. It takes the EMR time as input and returns
the corresponding POSIXct object.

Usage

emr_time2posix(time, show_hour = FALSE, tz = "UTC")

emr_posix2time(posix)

Arguments

time The EMR time to be converted.

show_hour Logical value indicating whether to include the hour in the output. Default is
FALSE.

tz Time zone to be used for the output POSIXct object. Default is "UTC".

posix A POSIXct object to be converted to EMR time.

Value

A POSIXct object representing the converted time.

Examples

30 January, 1938, 6:00 - birthday of Islam Karimov
t1 <- emr_date2time(30, 1, 1938, 6)
September 2, 2016, 7:00 - death of Islam Karimov
t2 <- emr_date2time(2, 9, 2016, 7)

emr_time2posix(c(t1, t2))
emr_time2posix(c(t1, t2), show_hour = TRUE)

emr_posix2time(emr_time2posix(c(t1, t2), show_hour = TRUE))

emr_time2year 55

Note that when show_hour = FALSE, the hour is set to 0
and therefore the results would be different from the original time values
emr_posix2time(emr_time2posix(c(t1, t2)))

emr_time2year Converts time from internal format to a year

Description

Converts time from internal format to a year.

Usage

emr_time2year(time)

Arguments

time vector of times in internal format

Details

This function converts time from internal format to a year.

Value

Vector of converted times. NA values in the vector would be returned as NA’s.

See Also

emr_time2hour, emr_time2dayofmonth, emr_time2month, emr_date2time

Examples

emr_db.init_examples()

30 January, 1938, 6:00 - birthday of Islam Karimov
t <- emr_date2time(30, 1, 1938, 6)
emr_time2hour(t)
emr_time2dayofmonth(t)
emr_time2month(t)
emr_time2year(t)

56 emr_track.addto

emr_track.addto Adds new records to a track

Description

Adds new records to a track from a TAB-delimited file or a data frame.

Usage

emr_track.addto(track, src, force = FALSE, remove_unknown = FALSE)

Arguments

track track name

src file name or data-frame containing the track records

force if ’TRUE’, suppresses user confirmation for addition to logical tracks

remove_unknown if ’TRUE’, removes unknown ids (ids that are not present at ’patients.dob’ track)
from the data. Otherwise, an error is thrown.

Details

This function adds new records to a track. The records are contained either in a file or a data frame.

If ’src’ is a file name, the latter must be constituted of four columns separated by spaces or ’TAB’
characters: ID, time, reference and value. The file might contain lines of comments which should
start with a ’#’ character. Note that the file should not contain a header line.

Alternatively ’src’ can be a data frame consisting of the columns named "id", "time", "ref" and
"value". Note: "ref" column in the data frame is optional.

Adding to a logical track adds the values to the underlying physical track, and is allowed only if
all the values are within the logical track allowed values and only from a data frame src. Note
that this might affect other logical tracks pointing to the same physical track and therefore requires
confirmation from the user unless force=TRUE.

Value

None.

See Also

emr_track.import, emr_track.create, emr_db.init, emr_track.ls

emr_track.attr.export 57

emr_track.attr.export Returns attributes values of tracks

Description

Returns attributes values of tracks.

Usage

emr_track.attr.export(track = NULL, attr = NULL, include_missing = FALSE)

Arguments

track a vector of track names or ’NULL’

attr a vector of attribute names or ’NULL’
include_missing

when TRUE - adds a row for tracks which do not have the ’attr’ with NA, or
tracks which do not exist. Otherwise tracks without an attribute would be omit-
ted from the data frame, and an error would be thrown for tracks which do not
exist.

Details

This function returns a data frame that contains attributes values of one or more tracks. The data
frame is constituted of 3 columns named ’track’, ’attr’ and ’value’.

’track’ parameter is optionally used to retrieve only the attributes of the specific track(s). If ’NULL’,
attributes of all the tracks are returned.

Likewise ’attr’ allows to retrieve only specifically named attributes.

If both ’track’ and ’attr’ are used, the attributes that fulfill both of the conditions are returned

Overriding a track also overrides it’s track attributes, the attributes will persist when the track is no
longer overridden.

Value

A data frame containing attributes values of tracks.

See Also

emr_track.attr.get, emr_track.attr.set

58 emr_track.attr.get

Examples

emr_db.init_examples()
emr_track.attr.export()
emr_track.attr.set("sparse_track", "gender", "female")
emr_track.attr.set("sparse_track", "tag", "")
emr_track.attr.set("dense_track", "gender", "male")
emr_track.attr.export()
emr_track.attr.export(track = "sparse_track")
emr_track.attr.export(attr = "gender")
emr_track.attr.export(track = "sparse_track", attr = "gender")

emr_track.attr.get Returns the value of the track attribute

Description

Returns the value of the track attribute.

Usage

emr_track.attr.get(track = NULL, attr = NULL)

Arguments

track track name

attr attribute name

Details

This function returns the value of a track attribute or ’NULL’ if the attribute does not exist.

Value

Track attribute value or ’NULL’.

See Also

emr_track.attr.export, emr_track.attr.set

Examples

emr_db.init_examples()
emr_track.attr.set("sparse_track", "test_attr", "value")
emr_track.attr.get("sparse_track", "test_attr")

emr_track.attr.rm 59

emr_track.attr.rm Deletes a track attribute

Description

Deletes a track attribute.

Usage

emr_track.attr.rm(track, attr)

Arguments

track one or more track names

attr attribute name

Details

This function deletes a track attribute.

Value

None.

See Also

emr_track.attr.set, emr_track.attr.get, emr_track.attr.export

Examples

emr_db.init_examples()
emr_track.attr.set("sparse_track", "test_attr", "value")
emr_track.attr.export()
emr_track.attr.rm("sparse_track", "test_attr")
emr_track.attr.export()

emr_track.attr.set Assigns a value to the track attribute

Description

Assigns a value to the track attribute.

Usage

emr_track.attr.set(track, attr, value)

60 emr_track.create

Arguments

track one or more track names

attr one or more attribute names

value on or more values (strings). Can be an empty string (”).

Details

This function creates a track attribute and assigns ’value’ to it. If the attribute already exists its value
is overwritten.

Note that both attributes and values should be in ASCII encoding.

Value

None.

See Also

emr_track.attr.get, emr_track.attr.rm, emr_track.attr.export

Examples

emr_db.init_examples()
emr_track.attr.set("sparse_track", "test_attr", "value")
emr_track.attr.get("sparse_track", "test_attr")

emr_track.create Creates a track from a track expression

Description

Creates a track from a track expression.

Usage

emr_track.create(
track,
space,
categorical,
expr,
stime = NULL,
etime = NULL,
iterator = NULL,
keepref = FALSE,
filter = NULL,
override = FALSE

)

emr_track.create 61

Arguments

track the name of the newly created track

space db path, one of the paths supplied in emr_db.connect

categorical if ’TRUE’ track is marked as categorical

expr track expression

stime start time scope

etime end time scope

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expressions. See also ’iterator’ section.

keepref If ’TRUE’ references are preserved in the iterator

filter Iterator filter

override Boolean indicating whether the creation intends to override an existing track
(default FALSE)

Details

This function creates a new track based on the values from the track expression. The location of the
track is controlled via ’space’ parameter which can be any of the db_dirs supplied in emr_db.connect

Value

None.

iterator

There are a few types of iterators:

Track iterator: Track iterator returns the points (including the reference) from the specified track.
Track name is specified as a string. If ‘keepref=FALSE‘ the reference of each point is set to
‘-1‘
Example:

Returns the level of glucose one hour after the insulin shot was made
emr_vtrack.create("glucose", "glucose_track", func="avg", time.shift=1)
emr_extract("glucose", iterator="insulin_shot_track")

Id-Time Points Iterator: Id-Time points iterator generates points from an *id-time points table*.
If ‘keepref=FALSE‘ the reference of each point is set to ‘-1‘.
Example:

Returns the level of glucose one hour after the insulin shot was made
emr_vtrack.create("glucose", "glucose_track", func = "avg", time.shift = 1)
r <- emr_extract("insulin_shot_track") # <– implicit iterator is used here
emr_extract("glucose", iterator = r)

62 emr_track.create

Ids Iterator: Ids iterator generates points with ids taken from an *ids table* and times that run
from ‘stime‘ to ‘etime‘ with a step of 1. If ‘keepref=TRUE‘ for each id-time pair the iterator
generates 255 points with references running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one
point is generated for the given id and time, and its reference is set to ‘-1‘.
Example:

stime <- emr_date2time(1, 1, 2016, 0)
etime <- emr_date2time(31, 12, 2016, 23)
emr_extract("glucose", iterator = data.frame(id = c(2, 5)), stime = stime, etime = etime)

Time Intervals Iterator: *Time intervals iterator* generates points for all the ids that appear in
’patients.dob’ track with times taken from a *time intervals table* (see: Appendix). Each time
starts at the beginning of the time interval and runs to the end of it with a step of 1. That being
said the points that lie outside of ‘[stime, etime]‘ range are skipped.
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references run-
ning from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id and
time, and its reference is set to ‘-1‘.
Example:
Returns the level of hangover for all patients the next day after New Year Eve for the years
2015 and 2016
stime1 <- emr_date2time(1, 1, 2015, 0)
etime1 <- emr_date2time(1, 1, 2015, 23)
stime2 <- emr_date2time(1, 1, 2016, 0)
etime2 <- emr_date2time(1, 1, 2016, 23)
emr_extract("alcohol_level_track", iterator = data.frame(
stime = c(stime1, stime2),
etime = c(etime1, etime2)
))

Id-Time Intervals Iterator: *Id-Time intervals iterator* generates for each id points that cover
‘[’stime’, ’etime’]‘ time range as specified in *id-time intervals table* (see: Appendix). Each
time starts at the beginning of the time interval and runs to the end of it with a step of 1. That
being said the points that lie outside of ‘[stime, etime]‘ range are skipped.
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references
running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id
and time, and its reference is set to ‘-1‘

Beat Iterator: *Beat Iterator* generates a "time beat" at the given period for each id that appear
in ’patients.dob’ track. The period is given always in hours.
Example:
emr_extract("glucose_track", iterator=10, stime=1000, etime=2000)
This will create a beat iterator with a period of 10 hours starting at ‘stime‘ up until ‘etime‘ is
reached. If, for example, ‘stime‘ equals ‘1000‘ then the beat iterator will create for each id
iterator points at times: 1000, 1010, 1020, ...
If ‘keepref=TRUE‘ for each id-time pair the iterator generates 255 points with references
running from ‘0‘ to ‘254‘. If ‘keepref=FALSE‘ only one point is generated for the given id
and time, and its reference is set to ‘-1‘.

Extended Beat Iterator: *Extended beat iterator* is as its name suggests a variation on the beat
iterator. It works by the same principle of creating time points with the given period however

emr_track.create 63

instead of basing the times count on ‘stime‘ it accepts an additional parameter - a track or a
Id-Time Points table - that instructs what should be the initial time point for each of the ids.
The two parameters (period and mapping) should come in a list. Each id is required to appear
only once and if a certain id does not appear at all, it is skipped by the iterator.
Anyhow points that lie outside of ‘[stime, etime]‘ range are not generated.
Example:
Returns the maximal weight of patients at one year span starting from their birthdays
emr_vtrack.create("weight", "weight_track", func = "max", time.shift = c(0, year()))
emr_extract("weight", iterator = list(year(), "birthday_track"), stime = 1000, etime = 2000)

Periodic Iterator: periodic iterator goes over every year/month. You can use it by running emr_monthly_iterator
or emr_yearly_iterator.
Example:
iter <- emr_yearly_iterator(emr_date2time(1, 1, 2002), emr_date2time(1, 1, 2017))
emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)
iter <- emr_monthly_iterator(emr_date2time(1, 1, 2002), n = 15)
emr_extract("dense_track", iterator = iter, stime = 1, etime = 3)

Implicit Iterator: The iterator is set implicitly if its value remains ‘NULL‘ (which is the default).
In that case the track expression is analyzed and searched for track names. If all the track
variables or virtual track variables point to the same track, this track is used as a source for
a track iterator. If more then one track appears in the track expression, an error message is
printed out notifying ambiguity.

Revealing Current Iterator Time: During the evaluation of a track expression one can access a spe-
cially defined variable named ‘EMR_TIME‘ (Python: ‘TIME‘). This variable contains a vector
(‘numpy.ndarray‘ in Python) of current iterator times. The length of the vector matches the length
of the track variable (which is a vector too).
Note that some values in ‘EMR_TIME‘ might be set 0. Skip those intervals and the values of the
track variables at the corresponding indices.
Returns times of the current iterator as a day of month
emr_extract("emr_time2dayofmonth(EMR_TIME)", iterator = "sparse_track")

See Also

emr_track.import, emr_track.addto, emr_track.rm, emr_track.readonly, emr_track.ls,
emr_track.exists

Examples

emr_db.init_examples()

emr_track.create("new_dense_track", expr = "dense_track * 2", categorical = FALSE)
emr_extract("new_dense_track")

64 emr_track.dbs

emr_track.dbs Returns a vector of db ids which have a version of the track

Description

emr_track.dbs returns all the databases which have a version of the track, while emr_track.current_db
returns the database from which ’naryn’ currently takes the track according to the override rules.

Usage

emr_track.dbs(track, dataframe = FALSE)

emr_track.current_db(track, dataframe = FALSE)

Arguments

track one or more track names

dataframe return a data frame with with columns called ’track’ and ’db’ instead of a vector
of database ids.

Value

A named vector of db ids for each track. If dataframe is TRUE - returns a data frame with
columns called ’track’ and ’db’ with the track and database ids (multiple rows per track in the
case of emr_track.dbs).

See Also

emr_track.info

Examples

both db1 and db2 have a track named 'categorical_track'
emr_db.init_examples(2)
emr_track.dbs("categorical_track")
emr_track.dbs(emr_track.ls())

emr_track.current_db("categorical_track")
emr_track.current_db(emr_track.ls())

emr_track.exists 65

emr_track.exists Checks whether the track exists

Description

Checks whether the track exists.

Usage

emr_track.exists(track, db_id = NULL)

Arguments

track track name

db_id string of a db dir passed to emr_db.connect

Details

This function checks whether the track exists. If db_id is passed, the function checks whether the
track exists in the specific db.

Value

’TRUE’ if the tracks exists, otherwise ’FALSE’

See Also

emr_track.ls, emr_track.info

Examples

emr_db.init_examples()
emr_track.exists("sparse_track")

emr_track.ids Returns track ids

Description

Returns the ids contained by the track.

Usage

emr_track.ids(track)

66 emr_track.import

Arguments

track track name

Details

Returns the ids contained by the track.

Note: this function ignores the current subset, i.e. ids of the whole track are returned.

Value

An Ids Table

See Also

emr_track.unique, emr_track.info

Examples

emr_db.init_examples()
emr_track.ids("categorical_track")

emr_track.import Imports a track from a file or data-frame

Description

Imports a track from a file or data-frame.

Usage

emr_track.import(
track,
space,
categorical,
src,
override = FALSE,
remove_unknown = FALSE

)

Arguments

track the name of the newly created track

space db dir string (path), one of the paths supplied in emr_db.connect

categorical if ’TRUE’ track is marked as categorical

src file name or data-frame containing the track records

emr_track.import 67

override Boolean indicating whether the creation intends to override an existing track
(default FALSE)

remove_unknown if ’TRUE’, removes unknown ids (ids that are not present at ’patients.dob’ track)
from the data. Otherwise, an error is thrown.

Details

This function creates a new track from a text file or a data-frame. The location of the track is
controlled via ’space’ parameter which can be any of the db_dirs supplied in emr_db.connect.

If ’src’ is a file name, the latter must be constituted of four columns separated by spaces or ’TAB’
characters: ID, time, reference and value. The file might contain lines of comments which should
start with a ’#’ character.

Alternatively ’src’ can be an ID-Time Values table, which is a data frame with the following
columns: "id" "time" "ref" and "value". Note that the file should not contain a header.

(see "User Manual" for more info).

Value

None.

See Also

emr_track.addto, emr_track.create, emr_track.readonly, emr_db.init, emr_track.ls

Examples

emr_db.init_examples()

import from data frame
emr_track.import(

"new_track",
categorical = TRUE,
src = data.frame(id = c(5, 10), time = c(1, 2), value = c(10, 20))

)

import from file
fn <- tempfile()
write.table(

data.frame(id = c(5, 10), time = c(1, 2), reference = c(1, 1), value = c(10, 20)),
file = fn, sep = "\t", row.names = FALSE, col.names = FALSE

)
emr_track.import("new_track1", categorical = TRUE, src = fn)

create an empty track
emr_track.import(

"empty_track",
categorical = TRUE,
src = data.frame(id = numeric(), time = numeric(), value = numeric())

)

68 emr_track.logical.create

emr_track.info Returns information about the track.

Description

This function returns information about the track: type, data type, number of vales, number of
unique values, minimal / maximal value, minimal / maximal id, minimal / maximal time.

Usage

emr_track.info(track)

Arguments

track track name

Details

Note: this function ignores the current subset, i.e. it is applied to the whole track.

Value

A list that contains track properties

See Also

emr_track.ls

Examples

emr_db.init_examples()
emr_track.info("sparse_track")

emr_track.logical.create

Creates a logical track

Description

Creates a logical track

Usage

emr_track.logical.create(track, src, values = NULL)

emr_track.logical.exists 69

Arguments

track one or more names of the newly created logical tracks.

src name of the physical tracks for each logical track

values vector of selected values. When creating multiple logical tracks at once - values
should be a list of vectors (with one vector of values for each logical track).

Details

This function creates a logical track based on an existing categorical track in the global space.

Note: Both the logical track and source should be on the global db. If the logical track would be
created and afterwards the db would be loaded as non-global db the logical tracks would **not**
be visible.

Value

None.

Examples

emr_track.logical.create("logical_track_example", "categorical_track", values = c(2, 3))

multiple tracks
emr_track.logical.create(

c("logical_track1", "logical_track2", "logical_track3"),
rep("categorical_track", 3),
values = list(c(2, 3), NULL, c(1, 4))

)

emr_track.logical.exists

Is a track logical

Description

Is a track logical

Usage

emr_track.logical.exists(track)

Arguments

track of the track

70 emr_track.logical.info

Value

TRUE if track is a logical track and FALSE otherwise

Examples

emr_track.logical.exists("logical_track")

emr_track.logical.info

Returns information about a logical track

Description

Returns information about a logical track

Usage

emr_track.logical.info(track)

Arguments

track track name

Details

This function returns the source and values of a logical track

Value

A list that contains source - the source of the logical track, and values: the values of the logical
track.

See Also

emr_track.ls

Examples

emr_db.init_examples()
emr_track.logical.info("logical_track")

emr_track.logical.rm 71

emr_track.logical.rm Deletes a logical track

Description

Deletes a logical track

Usage

emr_track.logical.rm(track, force = FALSE, rm_vars = TRUE)

Arguments

track the name of one or more tracks to delete

force if ’TRUE’, suppresses user confirmation of a named track removal

rm_vars remove track variables

Value

None.

emr_track.ls Returns a list of track names

Description

Returns a list of track names in the database.

Usage

emr_track.ls(
...,
db_id = NULL,
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE

)

emr_track.global.ls(
...,
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE

72 emr_track.ls

)

emr_track.user.ls(
...,
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE

)

emr_track.logical.ls(
...,
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE

)

Arguments

... these arguments are of either form ’pattern’ or ’attribute = pattern’

db_id db dir string (path), one of the paths supplied in emr_db.connect. If NULL - all
track names would be returned.

ignore.case, perl, fixed, useBytes
see ’grep’

Details

’emr_track.ls’ returns a list of all tracks (global and user) in the database that match the pattern (see
’grep’). If called without any arguments all tracks are returned.

If pattern is specified without a track attribute (i.e. in the form of ’pattern’) then filtering is applied
to the track names. If pattern is supplied with a track attribute (i.e. in the form of ’name = pattern’)
then track attribute is matched against the pattern.

Multiple patterns are applied one after another. The resulted list of tracks should match all the
patterns.

If db_id parameter is set, only tracks within the specific db would be shown. Note that tracks which
were overridden by other databases would not be shown, even if their files exist within the database.
See emr_db.connect for more details.

’emr_track.global.ls’, ’emr_track.user.ls’, ’emr_track.logical.ls’ work similarly to ’emr_track.ls’
but instead of returning all track names, each of them returns either global, local or logical tracks
accordingly.

Value

An array that contains the names of tracks that match the supplied patterns.

emr_track.mv 73

See Also

grep, emr_db.init, emr_track.exists

Examples

emr_db.init_examples()

get all track names
emr_track.ls()

get track names that match the pattern "den*"
emr_track.ls("den*")

emr_track.attr.set("sparse_track", "gender", "female")
emr_track.attr.set("dense_track", "gender", "male")
emr_track.ls(gender = "")
emr_track.ls(gender = "female")
emr_track.ls(gender = "^male")

emr_track.mv Moves (renames) a track

Description

Moves (renames) a track

Usage

emr_track.mv(src, tgt, space = NULL)

Arguments

src source track name
tgt target track name
space db path (string), one of the paths supplied in emr_db.connect or NULL

Details

This function moves (renames) ’src’ track into ’tgt’. If ’space’ equals ’NULL’, the track remains in
the same space. Otherwise it is moved to the specified space.

Note that logical tracks cannot be moved to the user space.

Value

None.

See Also

emr_track.create, emr_track.rm, emr_track.ls

74 emr_track.percentile

emr_track.percentile Returns track percentile of the values

Description

Returns track percentile of the values.

Usage

emr_track.percentile(track, val, lower = TRUE)

Arguments

track track name

val vector of values

lower how to calculate percentiles

Details

This function returns the percentiles of the values given in ’val’ based on track data.

If ’lower’ is ’TRUE’ percentile indicates the relative number of track values lower than ’val’. If
’lower’ is ’FALSE’ percentile reflects the relative number of track values lower or equal than ’val’.

Value

A vector of percentile values

See Also

emr_track.unique

Examples

emr_db.init_examples()

percentiles of 30, 50
emr_track.percentile("dense_track", c(30, 50))

calculate percentiles of track's earliest values in time window
emr_vtrack.create("v1",

src = "dense_track", func = "earliest",
time.shift = c(-5, 5)

)
emr_extract(

c(
"dense_track",
"emr_track.percentile(\"dense_track\", v1, FALSE)"

),

emr_track.readonly 75

keepref = TRUE, names = c("col1", "col2")
)

emr_track.readonly Gets or sets "read-only" property of a track

Description

Gets or sets "readonly" property of a track.

Usage

emr_track.readonly(track, readonly = NULL)

Arguments

track track name

readonly if ’NULL’, return "readonlyness" of the track, otherwise sets it

Details

This function gets or sets "readonly-ness" of the track. If ’readonly’ is ’NULL’ the functions returns
whether the track is R/O. Otherwise it sets "readonly-ness" to the value indicated by ’readonly’.

Logical tracks inherit their "readonly-ness" from the source physical tracks.

Overriding a track also overrides it’s "readonly-ness", it’s "readonly-ness" will persist when the
track is no longer overridden

Value

None.

See Also

emr_track.create, emr_track.mv, emr_track.ls, emr_track.rm

76 emr_track.unique

emr_track.rm Deletes a track

Description

Deletes a track.

Usage

emr_track.rm(track, force = FALSE)

Arguments

track one or more track names to delete

force if ’TRUE’, suppresses user confirmation of a named track removal

Details

This function deletes a user track from the database. By default ’emr_track.rm’ requires the user to
interactively confirm the deletion. Set ’force’ to ’TRUE’ to suppress the user prompt.

Value

None.

See Also

emr_track.create, emr_track.mv, emr_track.ls, emr_track.readonly

emr_track.unique Returns track values

Description

Returns unique and sorted track values

Usage

emr_track.unique(track)

Arguments

track track name

emr_track.var.get 77

Details

Returns unique and sorted track values. NaN values (if exist in the track) are not returned.

Note: this function ignores the current subset, i.e. the unique values of the whole track are returned.

Value

A vector of values

See Also

emr_track.ids, emr_track.info

Examples

emr_db.init_examples()
emr_track.unique("categorical_track")

emr_track.var.get Returns value of a track variable

Description

Returns value of a track variable.

Usage

emr_track.var.get(track, var)

Arguments

track track name

var track variable name

Details

This function returns the value of a track variable. If the variable does not exist NULL is returned.

Value

Track variable value. If the variable does not exists, NULL is returned.

See Also

emr_track.var.set, emr_track.var.ls, emr_track.var.rm

78 emr_track.var.ls

Examples

emr_db.init_examples()
emr_track.var.set("sparse_track", "test_var", 1:10)
emr_track.var.get("sparse_track", "test_var")
emr_track.var.rm("sparse_track", "test_var")

emr_track.var.ls Returns a list of track variables for a track

Description

Returns a list of track variables for a track.

Usage

emr_track.var.ls(
track,
pattern = "",
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE

)

Arguments

track track name
pattern, ignore.case, perl, fixed, useBytes

see ’grep’

Details

This function returns a list of track variables of a track that match the pattern (see ’grep’). If called
without any arguments all track variables of a track are returned.

Overriding a track also overrides it’s track variables, the variables will persist when the track is no
longer overridden

Value

An array that contains the names of track variables.

See Also

grep, emr_track.var.get, emr_track.var.set, emr_track.var.rm

emr_track.var.rm 79

Examples

emr_db.init_examples()
emr_track.var.ls("sparse_track")
emr_track.var.set("sparse_track", "test_var1", 1:10)
emr_track.var.set("sparse_track", "test_var2", "v")
emr_track.var.ls("sparse_track")
emr_track.var.ls("sparse_track", pattern = "2")
emr_track.var.rm("sparse_track", "test_var1")
emr_track.var.rm("sparse_track", "test_var2")

emr_track.var.rm Deletes a track variable

Description

Deletes a track variable.

Usage

emr_track.var.rm(track, var)

Arguments

track track name

var track variable name

Details

This function deletes a track variable.

Value

None.

See Also

emr_track.var.get, emr_track.var.set, emr_track.var.ls

Examples

emr_db.init_examples()
emr_track.var.set("sparse_track", "test_var1", 1:10)
emr_track.var.set("sparse_track", "test_var2", "v")
emr_track.var.ls("sparse_track")
emr_track.var.rm("sparse_track", "test_var1")
emr_track.var.rm("sparse_track", "test_var2")
emr_track.var.ls("sparse_track")

80 emr_track.var.set

emr_track.var.set Assigns value to a track variable

Description

Assigns value to a track variable.

Usage

emr_track.var.set(track, var, value)

Arguments

track track name

var track variable name

value value

Details

This function creates a track variable and assigns ’value’ to it. If the track variable already exists its
value is overwritten.

Value

None.

See Also

emr_track.var.get, emr_track.var.ls, emr_track.var.rm

Examples

emr_db.init_examples()
emr_track.var.set("sparse_track", "test_var", 1:10)
emr_track.var.get("sparse_track", "test_var")
emr_track.var.rm("sparse_track", "test_var")

emr_vtrack.attr.src 81

emr_vtrack.attr.src Get or set attributes of a virtual track

Description

Get or set attributes of a virtual track.

Usage

emr_vtrack.attr.src(vtrack, src)

emr_vtrack.attr.func(vtrack, func)

emr_vtrack.attr.params(vtrack, params)

emr_vtrack.attr.keepref(vtrack, keepref)

emr_vtrack.attr.time.shift(vtrack, time.shift)

emr_vtrack.attr.id.map(vtrack, id.map)

emr_vtrack.attr.filter(vtrack, filter)

Arguments

vtrack virtual track name.
src, func, params, keepref, time.shift, id.map, filter

virtual track attributes.

Details

When only ’vtrack’ argument is used in the call, the functions return the corresponding attribute of
the virtual track. Otherwise a new attribute value is set.

Note: since inter-dependency exists between certain attributes, the correctness of the attributes as a
whole can only be verified when the virtual track is used in a track expression.

For more information about the valid attribute values please refer to the documentation of ’emr_vtrack.create’.

Value

None.

See Also

emr_vtrack.create

82 emr_vtrack.create

Examples

emr_db.init_examples()
emr_vtrack.create("vtrack1", "dense_track")
emr_vtrack.attr.src("vtrack1")
emr_vtrack.attr.src("vtrack1", "sparse_track")
emr_vtrack.attr.src("vtrack1")

emr_vtrack.clear Clear all virtual tracks from the current environment

Description

Clear all virtual tracks from the current environment

Usage

emr_vtrack.clear()

Value

None.

Examples

emr_db.init_examples()
emr_vtrack.create("vtrack1", "dense_track")
emr_vtrack.ls()
emr_vtrack.clear()
emr_vtrack.ls()

emr_vtrack.create Creates a new virtual track

Description

Creates a new virtual track.

Usage

emr_vtrack.create(
vtrack,
src,
func = NULL,
params = NULL,
keepref = FALSE,
time.shift = NULL,
id.map = NULL,
filter = NULL

)

emr_vtrack.create 83

Arguments

vtrack virtual track name. If ’NULL’ is used, a unique name is generated.

src data source. either a track name or a list of two members: ID-Time Values table
(see "User Manual") and a logical. If the logical is ’TRUE’, the data in the table
is treated as categorical, otherwise as quantitative.

func, params see below.

keepref see below.

time.shift time shift and expansion for iterator time.

id.map id mapping.

filter virtual track filter. Note that filters with a source of another virtual track are not
allowed in order to avoid loops.

Details

This function creates a new virtual track named ’vtrack’.

During the evaluation of track expression that contains a virtual track ’vtrack’ the iterator point of
id-time (ID1, Time, Ref) form is transformed first to an id-time interval: (ID2, Time1, Time2, Ref).

If ’id.map’ is ’NULL’ then ID1 == ID2, otherwise ID2 is derived from the translation table provided
in ’id.map’. This table is a data frame with two first columns named ’id1’ and ’id2’, where ’id1’ is
mapped to ’id2’. If ’id.map’ contains also a third optional column named ’time.shift’ the value V
of this column is used to shift the time accordingly, i.e. Time1 = Time2 = Time + V.

’time.shift’ parameter (not to be confused with ’time.shift’ column of ’id.map’) can be either a
single number X, in which case Time1 = Time2 = Time + X. Alternatively ’time.shift’ can be a
vector of two numbers, i.e. ’c(X1, X2)’, which would result in Time1 = Time + X1, Time2 = Time
+ X2.

Both ’time.shift’ parameter and ’time.shift’ column within ’id.map’ may be used simultaneously.
In this case the time shifts are applied sequentially.

At the next step values from the data source ’src’ that fall into the new id-time interval and pass the
’filter’ are collected. ’src’ may be either a track name or a list of two members: ID-Time Values
table (see "User Manual") and a logical. If the logical is ’TRUE’, the data in the table is treated as
categorical, otherwise as quantitative.

If ’keepref’ is ’TRUE’ the reference of these values must match ’ref’ unless either the reference or
’ref’ are ’-1’.

Function ’func’ (with ’params’) is applied then on the collected values and produces a single value
which is considered to be the value of ’vtrack’ for the given iterator point. If ’NULL’ is used as a
value for ’func’, ’func’ is set then implicitly to ’value’, if the data source is categorical, or ’avg’, if
the data source is quantitative.

Use the following table for a reference of all valid functions and parameters combinations.

CATEGORICAL DATA SOURCE

FUNC PARAM DESCRIPTION
value vals/NULL A source value or -1 if there is more than one.
exists vals/NULL 1 if any of the ’vals’ exist otherwise 0. NULL indicates the existence of any value

84 emr_vtrack.create

sample NULL Uniformly sampled source value.
sample.time NULL Time of the uniformly sampled source value.
frequent vals/NULL The most frequent source value or -1 if there is more than one value.
size vals/NULL Number of values.
earliest vals/NULL Earliest value or -1 if there is more than one.
latest vals/NULL Latest value or -1 if there is more than one.
closest vals/NULL Values closest to the middle of the interval or -1 if there is more than one.
earliest.time vals/NULL Time of the earliest value.
latest.time vals/NULL Time of the latest value.
closest.earlier.time vals/NULL Time of the of the earlier of the closest values.
closest.later.time vals/NULL Time of the of the later of the closest values.
dt1.earliest vals/NULL Time difference between the earliest value and T1
dt1.latest vals/NULL Time difference between the latest value and T1
dt2.earliest vals/NULL Time difference between T2 and the earliest value
dt2.latest vals/NULL Time difference between T2 and the latest value

* ’vals’ is a vector of values. If not ’NULL’ it serves as a filter: the function is applied only to the
data source values that appear among ’vals’. ’vals’ can be a single NA value, in which case all the
values of the track would be filtered out.

QUANTITATIVE DATA SOURCE

FUNC PARAM DESCRIPTION
avg NULL Average of all values.
min NULL Minimal value.
max NULL Maximal value.
sample NULL Uniformly sampled source value.
sample.time NULL Time of the uniformly sampled source value.
size NULL Number of values.
earliest NULL Average of the earliest values.
latest NULL Average of the latest values.
closest NULL Average of values closest to the middle of the interval.
stddev NULL Unbiased standard deviation of the values.
sum NULL Sum of values.
quantile Percentile in the range of [0, 1] Quantile of the values.
percentile.upper NULL Average of upper-bound values percentiles.*
percentile.upper.min NULL Minimum of upper-bound values percentiles.*
percentile.upper.max NULL Maximum of upper-bound values percentiles.*
percentile.lower NULL Average of lower-bound values percentiles.*
percentile.lower.min NULL Minimum of lower-bound values percentiles.*
percentile.lower.max NULL Maximum of lower-bound values percentiles.*
lm.intercept NULL Intercept (aka "alpha") of the simple linear regression (X = time, Y = values)
lm.slope NULL Slope (aka "beta") of the simple linear regression (X = time, Y = values)
earliest.time NULL Time of the earliest value.
latest.time NULL Time of the latest value.
closest.earlier.time NULL Time of the of the earlier of the closest values.
closest.later.time NULL Time of the of the later of the closest values.
dt1.earliest NULL Time difference between the earliest value and T1

emr_vtrack.create_from_name 85

dt1.latest NULL Time difference between the latest value and T1
dt2.earliest NULL Time difference between T2 and the earliest value
dt2.latest NULL Time difference between T2 and the latest value

* Percentile is calculated based on the values of the whole data source even if a subset or a filter are
defined.

Note: ’time.shift’ can be used only when ’keepref’ is ’FALSE’. Also when ’keepref’ is ’TRUE’
only ’avg’, ’percentile.upper’ and ’percentile.lower’ can be used in ’func’.

Value

Name of the virtual track (invisibly)

See Also

emr_vtrack.attr.src, emr_vtrack.ls, emr_vtrack.exists, emr_vtrack.rm

Examples

emr_db.init_examples()

emr_vtrack.create("vtrack1", "dense_track",
time.shift = 1,
func = "max"

)
emr_vtrack.create("vtrack2", "dense_track",

time.shift = c(-5, 10), func = "min"
)
res <- emr_extract("dense_track", keepref = TRUE, names = "value")
emr_vtrack.create("vtrack3", list(res, FALSE),

time.shift = c(-5, 10),
func = "min"

)
emr_extract(c("dense_track", "vtrack1", "vtrack2", "vtrack3"),

keepref = TRUE, iterator = "dense_track"
)

emr_vtrack.create_from_name

Create a virtual track from an automatically generated name

Description

Create a virtual track from an automatically generated name

Usage

emr_vtrack.create_from_name(vtrack_name)

86 emr_vtrack.exists

Arguments

vtrack_name name of a virtual track automatically generated by emr_vtrack.name. Can be a
vector of virtual track names.

Value

an emr_vtrack object

See Also

emr_vtrack.create, emr_vtrack.name

Examples

emr_db.init_examples()
emr_filter.create("f_dense_track", "dense_track", time.shift = c(2, 4))

name <- emr_vtrack.name("dense_track",
time.shift = 1,
func = "max",
filter = "f_dense_track"

)

emr_vtrack.create_from_name(name)

emr_vtrack.exists Checks whether the virtual track exists

Description

Checks whether the virtual track exists.

Usage

emr_vtrack.exists(vtrack)

Arguments

vtrack virtual track name

Details

This function checks whether the virtual track exists.

Value

’TRUE’ if the virtual track exists, otherwise ’FALSE’.

emr_vtrack.info 87

See Also

emr_vtrack.create, emr_vtrack.ls

Examples

emr_db.init_examples()
emr_vtrack.create("vtrack1", "dense_track", time.shift = c(5, 10), func = "max")
emr_vtrack.exists("vtrack1")

emr_vtrack.info Returns the definition of a virtual track

Description

Returns the definition of a virtual track.

Usage

emr_vtrack.info(vtrack)

Arguments

vtrack virtual track name

Details

This function returns the internal representation of a virtual track.

Value

Internal representation of a virtual track.

See Also

emr_vtrack.create

Examples

emr_db.init_examples()
emr_vtrack.create("vtrack1", "dense_track", "max", time.shift = c(5, 10))
emr_vtrack.info("vtrack1")

88 emr_vtrack.ls

emr_vtrack.ls Returns a list of virtual track names

Description

Returns a list of virtual track names.

Usage

emr_vtrack.ls(
pattern = "",
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE

)

Arguments

pattern, ignore.case, perl, fixed, useBytes
see ’grep’

Details

This function returns a list of virtual tracks that exist in current R environment that match the pattern
(see ’grep’). If called without any arguments all virtual tracks are returned.

Value

An array that contains the names of virtual tracks.

See Also

grep, emr_vtrack.exists, emr_vtrack.create, emr_vtrack.rm

Examples

emr_db.init_examples()
emr_vtrack.create("vtrack1", "dense_track", func = "max")
emr_vtrack.create("vtrack2", "dense_track", func = "min")
emr_vtrack.ls()
emr_vtrack.ls("*2")

emr_vtrack.name 89

emr_vtrack.name Generate a default name for a virtual track

Description

Given virtual track parameters, generate a name with the following format: "vt_(src).func_(func).params_(params).kr(keepref).ts_(time.shift).id_(id.map).filter_(filter)"
Where for ’params’, ’time.shift’, and ’id.map’, the values are separated by an underscore.

Usage

emr_vtrack.name(
src,
func = NULL,
params = NULL,
keepref = FALSE,
time.shift = NULL,
id.map = NULL,
filter = NULL

)

Arguments

src a character vector specifying the source dataset(s) or filter(s) that the virtual
track is based on

func a character vector specifying the function(s) applied to the source data to gener-
ate the virtual track

params a named list specifying the parameters used by the function(s) to generate the
virtual track

keepref a logical value indicating whether the virtual track should keep the reference
column(s) of the source data

time.shift a numeric vector specifying the time shift(s) applied to the virtual track

id.map a named list specifying the mapping of the IDs between the source data and the
virtual track

filter a character vector specifying the filter(s) applied to the virtual track. Note that
the filter name cannot contain the character ’.’

Details

If func, params, time.shift, id.map, or filter are NULL - their section would not appear in the
generated name.

Value

a default name for the virtual track

90 emr_vtrack.rm

See Also

emr_vtrack.create

Examples

emr_db.init_examples()
emr_vtrack.name("dense_track",

time.shift = 1,
func = "max"

)

emr_vtrack.rm Deletes a virtual track

Description

Deletes a virtual track.

Usage

emr_vtrack.rm(vtrack)

Arguments

vtrack virtual track name

Details

This function deletes a virtual track from current R environment.

Value

None.

See Also

emr_vtrack.create, emr_vtrack.ls

Examples

emr_db.init_examples()
emr_vtrack.create("vtrack1", "dense_track")
emr_vtrack.create("vtrack2", "dense_track")
emr_vtrack.ls()
emr_vtrack.rm("vtrack1")
emr_vtrack.ls()

string_to_var 91

string_to_var Create a syntactically valid variable name from a string

Description

Spaces are replaced with ’_’ and other non valid characters are encoded as ’.’ + two bit hexadecimal
representation. Variables which start with an underscore or a dot are prepended with the letter ’X’.
The result is sent to make.names in order to deal with reserved words.

Usage

string_to_var(str)

Arguments

str string

Details

Note that strings starting with ’X.’ would not be translated back correctly using var_to_string,
i.e. string_to_var(var_to_string("X.saba")) would result ".saba".

Value

a syntactically valid variable name

Examples

string_to_var("a & b")
string_to_var("saba and savta")
string_to_var("/home/mydir")
string_to_var("www.google.com")
string_to_var("my_variable + 3")
string_to_var(".hidden variable")
string_to_var("NULL")

var_to_string Decode a variable created by string_to_var

Description

Convert a variable created by string_to_var back to the original string.

Usage

var_to_string(str)

92 var_to_string

Arguments

str string which was generated by string_to_var

Value

the original string

Examples

var_to_string(string_to_var("a & b"))
var_to_string(string_to_var("saba and savta"))
var_to_string(string_to_var("/home/mydir"))
var_to_string(string_to_var("www.google.com"))
var_to_string(string_to_var("my_variable + 3"))
var_to_string(string_to_var(".hidden variable"))
var_to_string(string_to_var("NULL"))

Index

∗ ~annotate
emr_annotate, 4

∗ ~attribute
emr_track.attr.export, 57
emr_track.attr.get, 58
emr_track.attr.rm, 59
emr_track.attr.set, 59

∗ ~attr
emr_track.attr.export, 57
emr_track.attr.get, 58
emr_track.attr.rm, 59
emr_track.attr.set, 59

∗ ~connect
emr_track.dbs, 64

∗ ~correlation
emr_cor, 5

∗ ~covariance
emr_cor, 5

∗ ~coverage
emr_ids_coverage, 36
emr_ids_vals_coverage, 37

∗ ~create_logical
emr_track.logical.create, 68
emr_track.logical.rm, 71

∗ ~create
emr_track.create, 60

∗ ~database
emr_db.connect, 11
emr_db.subset, 13
emr_db.subset.ids, 14
emr_db.subset.info, 15

∗ ~data
emr_db.connect, 11
emr_db.subset, 13
emr_db.subset.ids, 14
emr_db.subset.info, 15

∗ ~db_id
emr_track.dbs, 64

∗ ~db

emr_db.connect, 11
emr_db.reload, 13
emr_db.subset, 13
emr_db.subset.ids, 14
emr_db.subset.info, 15
emr_track.dbs, 64

∗ ~distribution
emr_dist, 16

∗ ~exists
emr_filter.exists, 31
emr_track.exists, 65
emr_vtrack.exists, 86

∗ ~extract
emr_extract, 24

∗ ~filter
emr_filter.attr.src, 28
emr_filter.create, 29
emr_filter.create_from_name, 31
emr_filter.exists, 31
emr_filter.info, 32
emr_filter.ls, 33
emr_filter.name, 34
emr_filter.rm, 35
emr_filters.info, 35

∗ ~ids
emr_track.ids, 65

∗ ~import
emr_track.addto, 56
emr_track.import, 66

∗ ~info
emr_track.dbs, 64
emr_track.info, 68
emr_track.logical.info, 70

∗ ~ls
emr_filter.ls, 33
emr_track.ls, 71
emr_track.var.ls, 78
emr_vtrack.ls, 88

∗ ~percentiles

93

94 INDEX

emr_quantiles, 39
∗ ~percentile

emr_track.percentile, 74
∗ ~property

emr_track.dbs, 64
emr_track.info, 68
emr_track.logical.info, 70

∗ ~quantiles
emr_quantiles, 39

∗ ~screen
emr_screen, 42

∗ ~statistics
emr_summary, 45

∗ ~subset
emr_db.subset, 13
emr_db.subset.ids, 14
emr_db.subset.info, 15

∗ ~summary
emr_summary, 45

∗ ~time
emr_date2time, 9
emr_time2dayofmonth, 51
emr_time2hour, 52
emr_time2month, 53
emr_time2year, 55

∗ ~tracks
emr_track.ls, 71

∗ ~track
emr_track.create, 60
emr_track.dbs, 64
emr_track.exists, 65
emr_track.ids, 65
emr_track.info, 68
emr_track.logical.create, 68
emr_track.logical.info, 70
emr_track.logical.rm, 71
emr_track.ls, 71
emr_track.mv, 73
emr_track.percentile, 74
emr_track.readonly, 75
emr_track.rm, 76
emr_track.unique, 76

∗ ~unique
emr_track.unique, 76

∗ ~variable
emr_track.var.get, 77
emr_track.var.ls, 78
emr_track.var.rm, 79

emr_track.var.set, 80
∗ ~variance

emr_cor, 5
∗ ~virtual

emr_vtrack.attr.src, 81
emr_vtrack.create, 82
emr_vtrack.create_from_name, 85
emr_vtrack.exists, 86
emr_vtrack.info, 87
emr_vtrack.ls, 88
emr_vtrack.name, 89
emr_vtrack.rm, 90

∗ package
naryn-package, 4

∗ track
emr_vtrack.create_from_name, 85
emr_vtrack.name, 89

cut, 9, 19

day (emr_time), 48
days (emr_time), 48

emr_annotate, 4
emr_char2time (emr_time2char), 50
emr_cor, 5, 19
emr_date2time, 9, 52, 53, 55
emr_db.connect, 11, 13, 14
emr_db.init, 56, 67, 73
emr_db.init (emr_db.connect), 11
emr_db.init_examples (emr_db.connect),

11
emr_db.ls (emr_db.connect), 11
emr_db.reload, 12, 13
emr_db.subset, 13, 14, 15
emr_db.subset.ids, 14, 14, 15
emr_db.subset.info, 14, 15
emr_db.unload, 15
emr_dist, 9, 16, 37
emr_download_example_data, 19
emr_entries.get, 20
emr_entries.get_all, 21
emr_entries.ls, 21
emr_entries.reload, 22
emr_entries.rm, 22
emr_entries.rm_all, 23
emr_entries.set, 24
emr_extract, 5, 24, 42, 45

INDEX 95

emr_filter.attr.expiration
(emr_filter.attr.src), 28

emr_filter.attr.keepref
(emr_filter.attr.src), 28

emr_filter.attr.src, 28, 30
emr_filter.attr.time.shift

(emr_filter.attr.src), 28
emr_filter.attr.val

(emr_filter.attr.src), 28
emr_filter.clear, 29
emr_filter.create, 28, 29, 31–35
emr_filter.create_from_name, 30, 31, 31
emr_filter.exists, 30, 31, 33
emr_filter.info, 32, 36
emr_filter.ls, 12, 30, 32, 33, 35
emr_filter.name, 34
emr_filter.rm, 30, 33, 35
emr_filters.info, 35
emr_ids_coverage, 36, 37
emr_ids_vals_coverage, 37, 37
emr_monthly_iterator, 38
emr_posix2time (emr_time2posix), 54
emr_quantiles, 39
emr_screen, 28, 42
emr_summary, 45
emr_time, 48
emr_time2char, 50
emr_time2date, 51
emr_time2dayofmonth, 10, 51, 53, 55
emr_time2hour, 10, 52, 52, 53, 55
emr_time2month, 10, 52, 53, 53, 55
emr_time2posix, 54
emr_time2year, 10, 52, 53, 55
emr_track.addto, 56, 63, 67
emr_track.attr.export, 57, 58–60
emr_track.attr.get, 57, 58, 59, 60
emr_track.attr.rm, 59, 60
emr_track.attr.set, 57–59, 59
emr_track.create, 12, 56, 60, 67, 73, 75, 76
emr_track.current_db (emr_track.dbs), 64
emr_track.dbs, 64
emr_track.exists, 63, 65, 73
emr_track.global.ls (emr_track.ls), 71
emr_track.ids, 37, 65, 77
emr_track.import, 12, 56, 63, 66
emr_track.info, 48, 64–66, 68, 77
emr_track.logical.create, 68
emr_track.logical.exists, 69

emr_track.logical.info, 70
emr_track.logical.ls (emr_track.ls), 71
emr_track.logical.rm, 71
emr_track.ls, 12, 13, 56, 63, 65, 67, 68, 70,

71, 73, 75, 76
emr_track.mv, 73, 75, 76
emr_track.percentile, 74
emr_track.readonly, 63, 67, 75, 76
emr_track.rm, 12, 63, 73, 75, 76
emr_track.unique, 9, 66, 74, 76
emr_track.user.ls (emr_track.ls), 71
emr_track.var.get, 77, 78–80
emr_track.var.ls, 77, 78, 79, 80
emr_track.var.rm, 77, 78, 79, 80
emr_track.var.set, 77–79, 80
emr_vtrack.attr.filter

(emr_vtrack.attr.src), 81
emr_vtrack.attr.func

(emr_vtrack.attr.src), 81
emr_vtrack.attr.id.map

(emr_vtrack.attr.src), 81
emr_vtrack.attr.keepref

(emr_vtrack.attr.src), 81
emr_vtrack.attr.params

(emr_vtrack.attr.src), 81
emr_vtrack.attr.src, 81, 85
emr_vtrack.attr.time.shift

(emr_vtrack.attr.src), 81
emr_vtrack.clear, 82
emr_vtrack.create, 81, 82, 86–88, 90
emr_vtrack.create_from_name, 85
emr_vtrack.exists, 85, 86, 88
emr_vtrack.info, 87
emr_vtrack.ls, 12, 13, 85, 87, 88, 90
emr_vtrack.name, 86, 89
emr_vtrack.rm, 85, 88, 90
emr_yearly_iterator

(emr_monthly_iterator), 38

grep, 33, 73, 78, 88

hour (emr_time), 48
hours (emr_time), 48

month (emr_time), 48
months (emr_time), 48

naryn (naryn-package), 4
naryn-package, 4

96 INDEX

string_to_var, 91

var_to_string, 91

week (emr_time), 48
weeks (emr_time), 48

year (emr_time), 48
years (emr_time), 48

	naryn-package
	emr_annotate
	emr_cor
	emr_date2time
	emr_db.connect
	emr_db.reload
	emr_db.subset
	emr_db.subset.ids
	emr_db.subset.info
	emr_db.unload
	emr_dist
	emr_download_example_data
	emr_entries.get
	emr_entries.get_all
	emr_entries.ls
	emr_entries.reload
	emr_entries.rm
	emr_entries.rm_all
	emr_entries.set
	emr_extract
	emr_filter.attr.src
	emr_filter.clear
	emr_filter.create
	emr_filter.create_from_name
	emr_filter.exists
	emr_filter.info
	emr_filter.ls
	emr_filter.name
	emr_filter.rm
	emr_filters.info
	emr_ids_coverage
	emr_ids_vals_coverage
	emr_monthly_iterator
	emr_quantiles
	emr_screen
	emr_summary
	emr_time
	emr_time2char
	emr_time2date
	emr_time2dayofmonth
	emr_time2hour
	emr_time2month
	emr_time2posix
	emr_time2year
	emr_track.addto
	emr_track.attr.export
	emr_track.attr.get
	emr_track.attr.rm
	emr_track.attr.set
	emr_track.create
	emr_track.dbs
	emr_track.exists
	emr_track.ids
	emr_track.import
	emr_track.info
	emr_track.logical.create
	emr_track.logical.exists
	emr_track.logical.info
	emr_track.logical.rm
	emr_track.ls
	emr_track.mv
	emr_track.percentile
	emr_track.readonly
	emr_track.rm
	emr_track.unique
	emr_track.var.get
	emr_track.var.ls
	emr_track.var.rm
	emr_track.var.set
	emr_vtrack.attr.src
	emr_vtrack.clear
	emr_vtrack.create
	emr_vtrack.create_from_name
	emr_vtrack.exists
	emr_vtrack.info
	emr_vtrack.ls
	emr_vtrack.name
	emr_vtrack.rm
	string_to_var
	var_to_string
	Index

