Package ‘folda’

September 11, 2024
Title Forward Stepwise Discriminant Analysis with Pillai's Trace
Version 0.1.0

Description A novel forward stepwise discriminant analysis framework
that integrates Pillai's trace with Uncorrelated Linear Discriminant Analysis (ULDA),
providing an improvement over traditional stepwise LDA methods that rely on Wilks' Lambda.
A stand-alone ULDA implementation is also provided, offering a more general solution
than the one available in the 'MASS' package. It automatically handles missing values and
provides visualization tools. For more de-
tails, see Wang (2024) <doi:10.48550/arXiv.2409.03136>.

License MIT + file LICENSE
Encoding UTF-8

RoxygenNote 7.2.3

Imports ggplot2, grDevices, Rcpp, stats

URL https://github.com/Moran79/folda, http://iamwangsiyu.com/folda/

BugReports https://github.com/Moran79/folda/issues

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

LinkingTo Rcpp, ReppEigen

VignetteBuilder knitr

NeedsCompilation yes

Author Siyu Wang [aut, cre, cph] (<https://orcid.org/0009-0005-2098-7089>)
Maintainer Siyu Wang <iamwangsiyu@gmail.com>

Repository CRAN

Date/Publication 2024-09-11 16:40:02 UTC

Contents

https://doi.org/10.48550/arXiv.2409.03136
https://github.com/Moran79/folda
http://iamwangsiyu.com/folda/
https://github.com/Moran79/folda/issues
https://orcid.org/0009-0005-2098-7089

2 checkPriorAndMisClassCost

forwardSel e 5
getBestVar 6
getDatalnShape e 7
getDesignMatriX e e 8
getDownSamplelnd 8
getLDscores 9
getMode L e e e 10
getNumFlag o 10
missingFix e e e e 11
nonConstInd L 12
PlotULDA e e 12
predict ULDA e 13
Index 15

checkPriorAndMisClassCost
Check and Normalize Prior Probabilities and Misclassification Costs

Description

This function verifies and normalizes the provided prior probabilities and misclassification cost
matrix for a given response variable. It ensures that the lengths of the prior and the dimensions of
the misclassification cost matrix match the number of levels in the response variable. If prior or
misClassCost are not provided, default values are used: the prior is set to the observed frequencies
of the response, and the misclassification cost matrix is set to 1 for all misclassifications and 0 for
correct classifications.

Usage

checkPriorAndMisClassCost(prior, misClassCost, response)

Arguments

prior A numeric vector representing the prior probabilities for each class in the re-
sponse variable. If NULL, the observed frequencies of the response are used as
the default prior.

misClassCost A square matrix representing the misclassification costs for each pair of classes
in the response variable. If NULL, a default misclassification matrix is created
where all misclassifications have a cost of 1 and correct classifications have a
cost of 0.

response A factor representing the response variable with multiple classes.

folda 3

Value
A list containing:

prior A normalized vector of prior probabilities for each class.

misClassCost A square matrix representing the misclassification costs, with rows and columns
labeled by the levels of the response variable.

folda Forward Uncorrelated Linear Discriminant Analysis

Description

This function fits a ULDA (Uncorrelated Linear Discriminant Analysis) model to the provided data,
with an option for forward selection of variables based on Pillai’s trace or Wilks’ Lambda. It can
also handle missing values, perform downsampling, and compute the linear discriminant scores and
group means for classification. The function returns a fitted ULDA model object.

Usage

folda(
datX,
response,
subsetMethod = c("forward”, "all"),
testStat = c("Pillai”, "Wilks"),
correction = TRUE,

alpha = 0.1,

prior = NULL,

misClassCost = NULL,

missingMethod = c("medianFlag"”, "newLevel”),

downSampling = FALSE,
kSample = NULL

)
Arguments
datX A data frame containing the predictor variables.
response A factor representing the response variable with multiple classes.

subsetMethod A character string specifying the method for variable selection. Options are
"forward"” for forward selection or "all"” for using all variables. Default is
"forward".

testStat A character string specifying the test statistic to use for forward selection. Op-
tions are "Pillai” or "Wilks". Defaultis "Pillai”.

correction A logical value indicating whether to apply a multiple comparison correction
during forward selection. Default is TRUE.

alpha

prior

misClassCost

missingMethod

downSampling

kSample

Value

folda

A numeric value between 0 and 1 specifying the significance level for the test
statistic during forward selection. Default is 0.1.

A numeric vector representing the prior probabilities for each class in the re-
sponse variable. If NULL, the observed class frequencies are used as the prior.
Default is NULL.

A square matrix C, where each element C};; represents the cost of classifying an
observation into class ¢ given that it truly belongs to class j. If NULL, a default
matrix with equal misclassification costs for all class pairs is used. Default is
NULL.

A character vector of length 2 specifying how to handle missing values for nu-
merical and categorical variables, respectively. Default is c("medianFlag”,
"newLevel").

A logical value indicating whether to perform downsampling to balance the class
distribution in the training data or speed up the program. Default is FALSE.

An integer specifying the maximum number of samples to take from each class
during downsampling. If NULL, the number of samples is limited to the size of
the smallest class. Default is NULL.

A list of class ULDA containing the following components:

scaling
groupMeans
prior
misClassCost
misReference
terms
xlevels
varIdx

varSD
varCenter
statPillai
pValue

predGini

confusionMatrix

forwardInfo

stopInfo

The matrix of scaling coefficients for the linear discriminants.
The group means of the linear discriminant scores.
The prior probabilities for each class.

The misclassification cost matrix.

A reference for handling missing values.

The terms used in the model formula.

The levels of the factors used in the model.

The indices of the selected variables.

The standard deviations of the selected variables.
The means of the selected variables.

The Pillai’s trace statistic.

The p-value associated with Pillai’s trace.

The Gini index of the predictions on the training data.

The confusion matrix for the training data predictions.
Information about the forward selection process, if applicable.

A message indicating why forward selection stopped, if applicable.

forwardSel 5

References

Howland, P., Jeon, M., & Park, H. (2003). Structure preserving dimension reduction for clustered
text data based on the generalized singular value decomposition. SIAM Journal on Matrix Analysis
and Applications

Wang, S. (2024). A New Forward Discriminant Analysis Framework Based On Pillai’s Trace and
ULDA. arXiv preprint arXiv:2409.03136. Available at https://arxiv.org/abs/2409.03136.

Examples
Fit the ULDA model
fit <- folda(datX = iris[, -5], response = iris[, 5], subsetMethod = "all")
Fit the ULDA model with forward selection
fit <- folda(datX = iris[, -5], response = iris[, 5], subsetMethod = "forward")

forwardSel Forward Selection via Multivariate Test Statistics

Description

This function performs forward selection on a dataset based on multivariate test statistics (Pillai
or Wilks). Ititeratively adds variables that contribute the most to the test statistic until no significant
variables are found or a stopping criterion is met.

Usage

forwardSel(m, response, testStat = "Pillai"”, alpha = 0.1, correction = TRUE)

Arguments
m A numeric matrix containing the predictor variables. Rows represent observa-
tions and columns represent variables.
response A factor representing the response variable with multiple levels (groups).
testStat A character string specifying the test statistic to use. Can be "Pillai” (default)
or "Wilks".
alpha A numeric value between 0 and 1 specifying the significance level for the test.
Default is 0.1.
correction A logical value indicating whether to apply a multiple comparison correction.
Default is TRUE.
Value

A list with three components:

currentVarList A vector of selected variable indices based on the forward selection process.

forwardInfo A data frame containing detailed information about the forward selection pro-
cess, including the selected variables, test statistics, and thresholds.

stopInfo A character string describing why the selection process stopped.

https://arxiv.org/abs/2409.03136

References

getBestVar

Wang, S. (2024). A New Forward Discriminant Analysis Framework Based On Pillai’s Trace and
ULDA. arXiv preprint arXiv:2409.03136. Available at https://arxiv.org/abs/2409.03136.

getBestVar

Select Best Variable at Current Step Based on Multivariate Test Statis-
tics

Description

This function selects the best variable based on the specified multivariate test statistic (Pillai
or Wilks). It evaluates the statistic for each candidate variable in newVar when combined with
currentVar, and returns the index and test statistic of the best variable. It also identifies collinear

variables.

Usage

getBestVar(currentVar, newVar, Sw, St, testStat = "Pillai")

Arguments

currentVar
newVar

Sw

St
testStat

Value

A list containing:

stopflag

varIdx
stat

collinearVar

A numeric vector indicating the indices of currently selected variables.

A numeric vector indicating the indices of candidate variables to be tested.
A matrix representing the within-class scatter matrix.

A matrix representing the total scatter matrix.

A character string specifying the test statistic to use. Can be either "Pillai” or
"Wilks". Defaultis "Pillai”.

A logical value indicating whether the best variable is collinear (i.e., should the
selection stop).

The index of the selected variable from newVar based on the test statistic.
The value of the test statistic for the selected variable.

A vector of indices from newVar representing collinear variables.

https://arxiv.org/abs/2409.03136

getDatalnShape 7

getDatalInShape Align Data with a Missing Reference

Description

This function aligns a given dataset (data) with a reference dataset (nissingReference). It ensures
that the structure, column names, and factor levels in data match the structure of missingReference.
If necessary, missing columns are initialized with NA, and factor levels are adjusted to match the
reference. Additionally, it handles the imputation of missing values based on the reference and
manages flag variables for categorical or numerical columns.

Usage

getDataInShape(data, missingReference)

Arguments
data A data frame to be aligned and adjusted according to the missingReference.
missingReference
A reference data frame that provides the structure (column names, factor levels,
and missing value reference) for aligning data.
Value

A data frame where the structure, column names, and factor levels of data are aligned with missingReference.
Missing values in data are imputed based on the first row of the missingReference, and flag vari-
ables are updated accordingly.

Examples

data <- data.frame(
X1_FLAG = c(0, o, 9),
X1 = factor(c(NA, "C", "B"), levels = LETTERS[2:3]),
X2_FLAG = c(NA, 0, 1),
X2 = c(2, NA, 3)

)
missingReference <- data.frame(
X1_FLAG = 1,
X1 = factor("A", levels = LETTERS[1:2]),
X2 =1,
X2_FLAG =1

)

getDataInShape(data, missingReference)

8 getDownSamplelnd

getDesignMatrix Generate the Design Matrix for LDA Model

Description

Generate the Design Matrix for LDA Model

Usage

getDesignMatrix(modellLDA, data, scale = FALSE)

Arguments
modelLDA A fitted LDA model object containing the terms, variable indices, variable cen-
ters, and scaling factors.
data A data frame containing the predictor variables that are used to create the design
matrix.
scale A logical value indicating whether to scale the design matrix based on the mean
and standard deviation of the variables (default is FALSE).
Value

A design matrix where each row corresponds to an observation and each column to a predictor
variable. If scale = TRUE, the variables are centered and scaled based on the means and standard
deviations provided in the LDA model object.

getDownSamplelInd Helper Function to Generate Training Set Indices Through Downsam-
pling

Description

This function selects the indices for the training set based on the class vector response. It allows
for optional downsampling to balance the class distribution by limiting the number of samples per
class.

Usage

getDownSampleInd(response, downSampling = FALSE, kSample = NULL)

getLDscores 9

Arguments

response A factor vector representing the class labels.

downSampling A logical value indicating whether downsampling should be applied. If TRUE,
downsampling is performed to limit the number of samples per class based on
kSample. Note that this may not result in equal class frequencies, as kSample
defines an upper limit for each class, not a lower limit.

kSample An integer specifying the maximum number of samples to be selected per class.
If NULL, the number of samples is limited to the size of the smallest class.

Value

An integer vector of indices representing the selected samples from the original response vector.

getlLDscores Compute Linear Discriminant Scores

Description

Compute Linear Discriminant Scores

Usage

getlLDscores(modellLDA, data, nScores = -1)

Arguments
modelLDA A fitted LDA model object containing the scaling matrix and the reference struc-
ture for missing data.
data A data frame containing the predictor variables for which to compute the linear
discriminant scores.
nScores An integer specifying the number of discriminant scores to compute. If -1 (de-
fault), all scores are computed.
Value

A matrix of linear discriminant scores, where rows correspond to observations and columns corre-
spond to the computed discriminant scores. If nScores > 9, only the specified number of scores is
returned; otherwise, all scores are computed and returned.

10 getNumFlag

getMode Calculate the Mode of a Factor Variable with Optional Priors

Description

Calculate the Mode of a Factor Variable with Optional Priors

Usage

getMode(v, prior)

Arguments
v A factor or vector that can be coerced into a factor. The mode will be calculated
from the levels of this factor.
prior A numeric vector of prior weights for each level of the factor.
Value

The mode of the factor v as a character string. If all values are NA, the function returns NA.

getNumFlag Identify Numeric, Integer, or Logical Columns in a Data Frame

Description

This function checks whether the columns in a data frame (or a vector) are of type numeric, integer,
or logical. It can return a logical vector indicating whether each column matches these types, or, if
index = TRUE, it returns the indices of the matching columns.

Usage

getNumFlag(data, index = FALSE)

Arguments
data A data frame or a vector. The function will check the data types of the columns
(if data is a data frame) or the type of the vector.
index A logical value. If FALSE (default), the function returns a logical vector indicat-

ing which columns are numeric, integer, or logical. If TRUE, it returns the indices
of these columns.

missingFix

Value

11

If index = FALSE (default), the function returns a logical vector with one element for each column
(or the vector itself), where TRUE indicates that the column is of type numeric, integer, or logical,
and FALSE indicates it is not. If index = TRUE, the function returns an integer vector containing the
indices of the columns that are numeric, integer, or logical.

missingFix

Impute Missing Values and Add Missing Flags to a Data Frame

Description

This function imputes missing values in a data frame based on specified methods for numerical
and categorical variables. Additionally, it can add flag columns to indicate missing values. For
numerical variables, missing values can be imputed using the mean or median. For categorical
variables, missing values can be imputed using the mode or a new level. This function also removes
constant columns (all NAs or all observed but the same value).

Usage
missingFix(data, missingMethod = c("medianFlag”, "newLevel"))
Arguments
data A data frame containing the data to be processed. Missing values (NA) will be
imputed based on the methods provided in missingMethod.
missingMethod A character vector of length 2 specifying the methods for imputing missing val-
ues. The first element specifies the method for numerical variables ("mean”,
"median”, "meanFlag”, or "medianFlag"”), and the second element specifies
the method for categorical variables ("mode”, "modeFlag”, or "newLevel”). If
"Flag" is included, a flag column will be added for the corresponding variable
type.
Value

A list with two elements:

data

ref

The original data frame with missing values imputed, and flag columns added if
applicable.

A reference row containing the imputed values and flag levels, which can be
used for future predictions or reference.

12 plot. ULDA

Examples

dat <- data.frame(

X1 = rep(NA, 5),

X2 = factor(rep(NA, 5), levels = LETTERS[1:3]),

X3 = 1:5,

X4 = LETTERS[1:5],

X5 = c(NA, 2, 3, 10, NA),

X6 = factor(c("A", NA, NA, "B", "B"), levels = LETTERS[1:3])
)

missingFix(dat)

nonConstInd Identify Non-Constant Columns in a Data Frame

Description

Identify Non-Constant Columns in a Data Frame

Usage

nonConstInd(data, tol = 1e-08, na.rm = FALSE)

Arguments
data A data frame in which columns will be checked for constant values. Columns
can be of any type (numeric, integer, logical, or factor).
tol A numeric tolerance value (default is 1e-8) that applies to numerical columns.
na.rm A logical value. If FALSE (default), missing values are retained during the check.
Value

An integer vector containing the indices of the non-constant columns in the data frame. If all
columns are constant, an empty vector is returned.

plot.ULDA Plot Decision Boundaries and Linear Discriminant Scores

Description

This function plots the decision boundaries and linear discriminant (LD) scores for a given ULDA
model. If it is a binary classification problem, a density plot is created. Otherwise, a scatter plot
with decision boundaries is generated.

predict. ULDA 13

Usage
S3 method for class 'ULDA'
plot(x, datX, response, ...)
Arguments
X A fitted ULDA model object.
datX A data frame containing the predictor variables.
response A factor representing the response variable (training labels) corresponding to
datX.

Additional arguments.

Value

A ggplot?2 plot object, either a density plot or a scatter plot with decision boundaries.

Examples

fit <- folda(datX = iris[, -5], response = iris[, 5], subsetMethod = "all")
plot(fit, iris[, -51, iris[, 51)

predict.ULDA Predict Method for ULDA Model

Description

This function predicts the class labels or class probabilities for new data using a fitted ULDA model.
The prediction can return either the most likely class ("response”) or the posterior probabilities
for each class ("prob").

Usage
S3 method for class 'ULDA'
predict(object, newdata, type = c("response”, "prob"), ...)
Arguments
object A fitted ULDA model object.
newdata A data frame containing the new predictor variables for which predictions are to
be made.
type A character string specifying the type of prediction to return. "response” re-

turns the predicted class labels, while "prob” returns the posterior probabilities
for each class. Default is "response”.

Additional arguments.

14 predict. ULDA

Value

If type = "response”, the function returns a vector of predicted class labels. If type = "prob”, it
returns a matrix of posterior probabilities, where each row corresponds to a sample and each column
to a class.

Examples
fit <- folda(datX = iris[, -5], response = iris[, 5], subsetMethod = "all")

Predict class labels
predictions <- predict(fit, iris, type = "response”)

Predict class probabilities
prob_predictions <- predict(fit, iris, type = "prob")

Index

checkPriorAndMisClassCost, 2

folda, 3
forwardSel, 5

getBestVar, 6
getDatalInShape, 7
getDesignMatrix, 8
getDownSampleInd, 8
getlLDscores, 9
getMode, 10
getNumFlag, 10

missingFix, 11
nonConstInd, 12

plot.ULDA, 12
predict.ULDA, 13

15

	checkPriorAndMisClassCost
	folda
	forwardSel
	getBestVar
	getDataInShape
	getDesignMatrix
	getDownSampleInd
	getLDscores
	getMode
	getNumFlag
	missingFix
	nonConstInd
	plot.ULDA
	predict.ULDA
	Index

