
Package ‘MuMIn’
June 22, 2024

Type Package

Title Multi-Model Inference

Version 1.48.4

Date 2024-06-21

Encoding UTF-8

Author Kamil Bartoń [aut, cre] (<https://orcid.org/0000-0001-5562-8274>)

Maintainer Kamil Bartoń <kamil.barton@go2.pl>

Description Tools for model selection and model averaging with support for a
wide range of statistical models. Automated model selection through
subsets of the maximum model, with optional constraints for model
inclusion. Averaging of model parameters and predictions based on
model weights derived from information criteria (AICc and alike)
or custom model weighting schemes.

License GPL-2

Depends R (>= 4.2.0)

Imports graphics, methods, Matrix, stats, stats4, nlme, insight

Suggests lme4 (>= 1.1.0), mgcv (>= 1.7.5), gamm4, MASS, nnet, survival
(>= 3.1.0), geepack, performance

Enhances aod, aods3, betareg, caper, coxme (>= 2.2.4), cplm, gee,
glmmML, logistf, MCMCglmm, ordinal, pscl, spatialreg, splm,
unmarked (>= 1.4.0), geeM (>= 0.7.5), gamlss, RMark, glmmTMB,
brglm, quantreg, maxlike

LazyData yes

ByteCompile yes

NeedsCompilation no

Repository CRAN

Date/Publication 2024-06-22 14:10:02 UTC

1

https://orcid.org/0000-0001-5562-8274

2 Contents

Contents

MuMIn-package . 3
AICc . 4
arm.glm . 6
Beetle . 7
BGWeights . 9
bootWeights . 11
Cement . 12
coefplot . 13
cos2Weights . 15
dredge . 17
exprApply . 22
Formula manipulation . 24
get.models . 25
GPA . 27
Information criteria . 28
jackknifeWeights . 29
loo . 31
merge.model.selection . 32
Model utilities . 33
model.avg . 35
model.sel . 38
model.selection.object . 40
MuMIn-models . 41
nested . 43
par.avg . 44
pdredge . 46
plot.model.selection . 48
predict.averaging . 50
QAIC . 53
QIC . 54
r.squaredGLMM . 56
r.squaredLR . 59
stackingWeights . 60
std.coef . 62
stdize . 64
subset.model.selection . 68
sw . 69
updateable . 71
Weights . 73

Index 76

MuMIn-package 3

MuMIn-package Multi-model inference

Description

The package MuMIn contains functions to streamline information-theoretic model selection and
carry out model averaging based on information criteria.

Details

The suite of functions includes:

dredge performs automated model selection by generating subsets of the supplied ‘global’ model
and optional choices of other model properties (such as different link functions). The set of
models can be generated with ‘all possible’ combinations or tailored according to specified
conditions.

model.sel creates a model selection table from selected models.
model.avg calculates model-averaged parameters, along with standard errors and confidence in-

tervals. The predict method produces model-averaged predictions.
AICc calculates the second-order Akaike information criterion. Some other criteria are provided,

see below.
stdize, stdizeFit, std.coef, partial.sd can be used to standardise data and model coeffi-

cients by standard deviation or partial standard deviation.

For a complete list of functions, use library(help = "MuMIn").

By default, AICc is used to rank models and obtain model weights, although any information cri-
terion can be used. At least the following are currently implemented in R: AIC and BIC in package
stats, and QAIC, QAICc, ICOMP, CAICF, and Mallows’ Cp in MuMIn. There is also a DIC extractor
for MCMC models and a QIC for GEE.

Many common modelling functions in R are supported. For a complete list, see the list of supported
models.

In addition to “regular” information criteria, model averaging can be performed using various types
of model weighting algorithms: Bates-Granger, bootstrapped, cos-squared, jackknife, stacking, or
ARM. These weighting functions are mainly applicable to glms.

Author(s)

Kamil Bartoń

References

Burnham, K. P. and Anderson, D. R. 2002 Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

See Also

AIC, step or stepAIC for stepwise model selection by AIC.

4 AICc

Examples

options(na.action = "na.fail") # change the default "na.omit" to prevent models
from being fitted to different datasets in
case of missing values.

fm1 <- lm(y ~ ., data = Cement)
ms1 <- dredge(fm1)

Visualize the model selection table:

par(mar = c(3,5,6,4))
plot(ms1, labAsExpr = TRUE)

model.avg(ms1, subset = delta < 4)

confset.95p <- get.models(ms1, cumsum(weight) <= .95)
avgmod.95p <- model.avg(confset.95p)
summary(avgmod.95p)
confint(avgmod.95p)

AICc Second-order Akaike Information Criterion

Description

Calculate Second-order Akaike Information Criterion for one or several fitted model objects (AICc,
AIC for small samples).

Usage

AICc(object, ..., k = 2, REML = NULL)

Arguments

object a fitted model object for which there exists a logLik method, or a "logLik"
object.

... optionally more fitted model objects.

k the ‘penalty’ per parameter to be used; the default k = 2 is the classical AIC.

REML optional logical value, passed to the logLik method indicating whether the re-
stricted log-likelihood or log-likelihood should be used. The default is to use the
method used for model estimation.

Value

If just one object is provided, returns a numeric value with the corresponding AICc; if more than
one object are provided, returns a data.frame with rows corresponding to the objects and columns
representing the number of parameters in the model (df) and AICc.

AICc 5

Note

AICc should be used instead AIC when sample size is small in comparison to the number of esti-
mated parameters (Burnham & Anderson 2002 recommend its use when n/K < 40).

Author(s)

Kamil Bartoń

References

Burnham, K. P. and Anderson, D. R. 2002 Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

Hurvich, C. M. and Tsai, C.-L. 1989 Regression and time series model selection in small samples,
Biometrika 76, 297–307.

See Also

Akaike’s An Information Criterion: AIC

Some other implementations:

AICc in package AICcmodavg, AICc in package bbmle, aicc in package glmulti

Examples

#Model-averaging mixed models

options(na.action = "na.fail")

data(Orthodont, package = "nlme")

Fit model by REML
fm2 <- lme(distance ~ Sex*age, data = Orthodont,

random = ~ 1|Subject / Sex, method = "REML")

Model selection: ranking by AICc using ML
ms2 <- dredge(fm2, trace = TRUE, rank = "AICc", REML = FALSE)

(attr(ms2, "rank.call"))

Get the models (fitted by REML, as in the global model)
fmList <- get.models(ms2, 1:4)

Because the models originate from 'dredge(..., rank = AICc, REML = FALSE)',
the default weights in 'model.avg' are ML based:
summary(model.avg(fmList))

Not run:
the same result:
model.avg(fmList, rank = "AICc", rank.args = list(REML = FALSE))

End(Not run)

6 arm.glm

arm.glm Adaptive Regression by Mixing

Description

Combine all-subsets GLMs using the ARM algorithm. Calculate ARM weights for a set of models.

Usage

arm.glm(object, R = 250, weight.by = c("aic", "loglik"), trace = FALSE)

armWeights(object, ..., data, weight.by = c("aic", "loglik"), R = 1000)

Arguments

object for arm.glm, a fitted “global” glm object. For armWeights, a fitted glm object,
or a list of such, or an "averaging" object.

... more fitted model objects.

R number of permutations.

weight.by indicates whether model weights should be calculated with AIC or log-likelihood.

trace if TRUE, information is printed during the running of arm.glm.

data a data frame in which to look for variables for use with prediction. If omitted,
the fitted linear predictors are used.

Details

For each of all-subsets of the “global” model, parameters are estimated using randomly sampled half
of the data. Log-likelihood given the remaining half of the data is used to calculate AIC weights.
This is repeated R times and mean of the weights is used to average all-subsets parameters estimated
using complete data.

Value

arm.glm returns an object of class "averaging" contaning only “full” averaged coefficients. See
model.avg for object description.

armWeights returns a numeric vector of model weights.

Note

Number of parameters is limited to floor(nobs(object) / 2) - 1. All-subsets respect marginality
constraints.

Author(s)

Kamil Bartoń

Beetle 7

References

Yang, Y. 2001 Adaptive Regression by Mixing. Journal of the American Statistical Association 96,
574–588.

Yang, Y. 2003 Regression with multiple candidate models: selecting or mixing? Statistica Sinica
13, 783–810.

See Also

model.avg, par.avg

Weights for assigning new model weights to an "averaging" object.

Other implementation of ARM algorithm: arms in (archived) package MMIX.

Other kinds of model weights: BGWeights, bootWeights, cos2Weights, jackknifeWeights,
stackingWeights.

Examples

fm <- glm(y ~ X1 + X2 + X3 + X4, data = Cement)

summary(am1 <- arm.glm(fm, R = 15))

mst <- dredge(fm)

am2 <- model.avg(mst, fit = TRUE)

Weights(am2) <- armWeights(am2, data = Cement, R = 15)

differences are due to small R:
coef(am1, full = TRUE)
coef(am2, full = TRUE)

Beetle Flour beetle mortality data

Description

Mortality of flour beetles (Tribolium confusum) due to exposure to gaseous carbon disulfide CS2,
from Bliss (1935).

Usage

Beetle

8 Beetle

Format

Beetle is a data frame with 5 elements.

Prop a matrix with two columns named nkilled and nsurvived
mortality observed mortality rate

dose the dose of CS2 in mg/L

n.tested number of beetles tested

n.killed number of beetles killed.

Source

Bliss, C. I. 1935 The calculation of the dosage-mortality curve. Annals of Applied Biology 22,
134–167.

References

Burnham, K. P. and Anderson, D. R. 2002 Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

Examples

"Logistic regression example"
from Burnham & Anderson (2002) chapter 4.11
Fit a global model with all the considered variables

globmod <- glm(Prop ~ dose + I(dose^2) + log(dose) + I(log(dose)^2),
data = Beetle, family = binomial, na.action = na.fail)

A logical expression defining the subset of models to use:
* either log(dose) or dose
* the quadratic terms can appear only together with linear terms
msubset <- expression(xor(dose, `log(dose)`) &

dc(dose, `I(dose^2)`) &
dc(`log(dose)`, `I(log(dose)^2)`))

Table 4.6
Use 'varying' argument to fit models with different link functions
Note the use of 'alist' rather than 'list' in order to keep the
'family' objects unevaluated
varying.link <- list(family = alist(

logit = binomial("logit"),
probit = binomial("probit"),
cloglog = binomial("cloglog")
))

(ms12 <- dredge(globmod, subset = msubset, varying = varying.link,
rank = AIC))

Table 4.7 "models justifiable a priori"
(ms3 <- subset(ms12, has(dose, !`I(dose^2)`)))
The same result, but would fit the models again:

BGWeights 9

ms3 <- update(ms12, update(globmod, . ~ dose), subset =,
fixed = ~dose)
mod3 <- get.models(ms3, 1:3)
Table 4.8. Predicted mortality probability at dose 40.
calculate confidence intervals on logit scale
logit.ci <- function(p, se, quantile = 2) {

C. <- exp(quantile * se / (p * (1 - p)))
p /(p + (1 - p) * c(C., 1/C.))

}

mavg3 <- model.avg(mod3, revised.var = FALSE)
get predictions both from component and averaged models
pred <- lapply(c(component = mod3, list(averaged = mavg3)), predict,

newdata = list(dose = 40), type = "response", se.fit = TRUE)
reshape predicted values
pred <- t(sapply(pred, function(x) unlist(x)[1:2]))
colnames(pred) <- c("fit", "se.fit")

build the table
tab <- cbind(

c(Weights(ms3), NA),
pred,
matrix(logit.ci(pred[,"fit"], pred[,"se.fit"],

quantile = c(rep(1.96, 3), 2)), ncol = 2)
)

colnames(tab) <- c("Akaike weight", "Predicted(40)", "SE", "Lower CI",
"Upper CI")

rownames(tab) <- c(as.character(ms3$family), "model-averaged")
print(tab, digits = 3, na.print = "")
Figure 4.3
newdata <- list(dose = seq(min(Beetle$dose), max(Beetle$dose), length.out = 25))

add model-averaged prediction with CI, using the same method as above
avpred <- predict(mavg3, newdata, se.fit = TRUE, type = "response")

avci <- matrix(logit.ci(avpred$fit, avpred$se.fit, quantile = 2), ncol = 2)

matplot(newdata$dose, sapply(mod3, predict, newdata, type = "response"),
type = "l", xlab = quote(list("Dose of" ~ CS[2],(mg/L))),
ylab = "Mortality", col = 2:4, lty = 3, lwd = 1

)
matplot(newdata$dose, cbind(avpred$fit, avci), type = "l", add = TRUE,

lwd = 1, lty = c(1, 2, 2), col = 1)

legend("topleft", NULL, c(as.character(ms3$family), expression(`averaged`
%+-% CI)), lty = c(3, 3, 3, 1), col = c(2:4, 1))

BGWeights Bates-Granger minimal variance model weights

10 BGWeights

Description

Compute empirical weights based on out of sample forecast variances, following Bates and Granger
(1969).

Usage

BGWeights(object, ..., data, force.update = FALSE)

Arguments

object, ... two or more fitted glm objects, or a list of such, or an "averaging" object.

data a data frame containing the variables in the model.

force.update if TRUE, the much less efficient method of updating glm function will be used
rather than directly via glm.fit. This only applies to glms, in case of other
model types update is always used.

Details

Bates-Granger model weights are calculated using prediction covariance. To get the estimate of
prediction covariance, the models are fitted to randomly selected half of data and prediction is
done on the remaining half. These predictions are then used to compute the variance-covariance
between models, Σ. Model weights are then calculated as wBG = (1′Σ−11)−11Σ−1, where 1 a
vector of 1-s.

Bates-Granger model weights may be outside of the [0, 1] range, which may cause the averaged
variances to be negative. Apparently this method works best when data is large.

Value

A numeric vector of model weights.

Note

For matrix inversion, MASS::ginv() is more stable near singularities than solve. It will be used as
a fallback if solve fails and MASS is available.

Author(s)

Carsten Dormann, Kamil Bartoń

References

Bates, J. M. and Granger, C. W. J. 1969 The combination of forecasts. Journal of the Operational
Research Society 20, 451-468.

Dormann, C. et al. (2018) Model averaging in ecology: a review of Bayesian, information-theoretic,
and tactical approaches for predictive inference. Ecological Monographs 88, 485–504.

bootWeights 11

See Also

Weights, model.avg

Other model weights: bootWeights(), cos2Weights(), jackknifeWeights(), stackingWeights()

Examples

fm <- glm(Prop ~ mortality + dose, family = binomial, Beetle, na.action = na.fail)
models <- lapply(dredge(fm, evaluate = FALSE), eval)
ma <- model.avg(models)

this produces warnings because of negative variances:
set.seed(78)
Weights(ma) <- BGWeights(ma, data = Beetle)
coefTable(ma, full = TRUE)

SE for prediction is not reliable if some or none of coefficient's SE
are available
predict(ma, data = test.data, se.fit = TRUE)
coefTable(ma, full = TRUE)

bootWeights Bootstrap model weights

Description

Compute model weights using bootstrap.

Usage

bootWeights(object, ..., R, rank = c("AICc", "AIC", "BIC"))

Arguments

object, ... two or more fitted glm objects, or a list of such, or an "averaging" object.

R the number of replicates.

rank a character string, specifying the information criterion to use for model ranking.
Defaults to AICc.

Details

The models are fitted repeatedly to a resampled data set and ranked using AIC-type criterion. The
model weights represent the proportion of replicates when a model has the lowest IC value.

Value

A numeric vector of model weights.

12 Cement

Author(s)

Kamil Bartoń, Carsten Dormann

References

Dormann, C. et al. 2018 Model averaging in ecology: a review of Bayesian, information-theoretic,
and tactical approaches for predictive inference. Ecological Monographs 88, 485–504.

See Also

Weights, model.avg

Other model weights: BGWeights(), cos2Weights(), jackknifeWeights(), stackingWeights()

Examples

To speed up the bootstrap, use 'x = TRUE' so that model matrix is included
in the returned object
fm <- glm(Prop ~ mortality + dose, family = binomial, data = Beetle,

na.action = na.fail, x = TRUE)

fml <- lapply(dredge(fm, eval = FALSE), eval)
am <- model.avg(fml)

Weights(am) <- bootWeights(am, data = Beetle, R = 25)

summary(am)

Cement Cement hardening data

Description

Cement hardening data from Woods et al (1932).

Usage

Cement

Format

Cement is a data frame with 5 variables. x1 -x4 are four predictor variables expressed as a percent-
age of weight.

y calories of heat evolved per gram of cement after 180 days of hardening
X1 calcium aluminate
X2 tricalcium silicate
X3 tetracalcium alumino ferrite
X4 dicalcium silicate.

coefplot 13

Source

Woods H., Steinour H.H., Starke H.R. (1932) Effect of composition of Portland cement on heat
evolved during hardening. Industrial & Engineering Chemistry 24, 1207–1214.

References

Burnham, K. P. and Anderson, D. R. 2002 Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

coefplot Plot model coefficients

Description

Produce dot-and-whisker plot of the model(-averaged) coefficients, with confidence intervals

Usage

coefplot(
x, lci, uci,
labels = NULL, width = 0.15,
shift = 0, horizontal = TRUE,
main = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL,
labAsExpr = TRUE, mar.adj = TRUE, lab.line = 0.5,
lty = par("lty"), lwd = par("lwd"), pch = 21,
col = par("col"), bg = par("bg"),
dotcex = par("cex"), dotcol = col,
staplelty = lty, staplelwd = lwd, staplecol = col,
zerolty = "dotted", zerolwd = lwd, zerocol = "gray",
las = 2, ann = TRUE, axes = TRUE, add = FALSE,
type = "p",
...

)

S3 method for class 'averaging'
plot(
x,
full = TRUE, level = 0.95, intercept = TRUE,
parm = NULL, labels = NULL, width = 0.1,
shift = max(0.2, width * 2.1 + 0.05),
horizontal = TRUE,
xlim = NULL, ylim = NULL,
main = "Model-averaged coefficients",
xlab = NULL, ylab = NULL,
add = FALSE,
...

)

14 coefplot

Arguments

x either a (possibly named) vector of coefficients (for coefplot), or an "averaging"
object.

lci, uci vectors of lower and upper confidence intervals. Alternatively a two-column
matrix with columns containing confidence intervals, in which case uci is ig-
nored.

labels optional vector of coefficient names. By default, names of x are used for labels.

width width of the staples (= end of whisker).

shift the amount of perpendicular shift for the dots and whiskers. Useful when adding
to an existing plot.

horizontal logical indicating if the plots should be horizontal; defaults to TRUE.

main an overall title for the plot: see title.

xlab, ylab x- and y-axis annotation. Can be suppressed by ann=FALSE.

xlim, ylim optional, the x and y limits of the plot.

labAsExpr logical indicating whether the coefficient names should be transformed to ex-
pressions to create prettier labels (see plotmath)

mar.adj logical indicating whether the (left or lower) margin should be expanded to fit
the labels

lab.line margin line for the labels
lty, lwd, pch, col, bg

default line type, line width, point character, foreground colour for all elements,
and background colour for open symbols.

dotcex, dotcol dots point size expansion and colour.
staplelty, staplelwd, staplecol

staple line type, width, and colour.
zerolty, zerolwd, zerocol

zero-line type, line width, colour. Setting zerolty to NA suppresses the line.

las the style of labels for coefficient names. See par.

ann logical indicating if axes should be annotated (by xlab and ylab).

axes a logical value indicating whether both axes should be drawn on the plot.

add logical, if true add to current plot.

type if "n", the plot region is left empty, any other value causes the plot being drawn.

... additional arguments passed to coefplot or more graphical parameters.

full a logical value specifying whether the “full” model-averaged coefficients are
plotted. If FALSE, the “subset”-averaged coefficients are plotted, and both types
if NA. See model.avg.

level the confidence level required.

intercept logical indicating if intercept should be included in the plot

parm a specification of which parameters are to be plotted, either a vector of numbers
or a vector of names. If missing, all parameters are considered.

cos2Weights 15

Details

Plot model(-averaged) coefficients with confidence intervals.

Value

An invisible matrix containing coordinates of points and whiskers, or, a two-element list of such,
one for each coefficient type in plot.averaging when full is NA.

Author(s)

Kamil Bartoń

Examples

fm <- glm(Prop ~ dose + I(dose^2) + log(dose) + I(log(dose)^2),
data = Beetle, family = binomial, na.action = na.fail)

ma <- model.avg(dredge(fm))

default coefficient plot:
plot(ma, full = NA, intercept = FALSE)

Add colours per coefficient type
Replicate each colour n(=number of coefficients) times
clr <- c("black", "red2")
i <- rep(1:2, each = length(coef(ma)) - 1)
plot(ma, full = NA, intercept = FALSE,

pch = 22, dotcex = 1.5,
col = clr[i], bg = clr[i],
lwd = 6, lend = 1, width = 0, horizontal = 0)

Use `type = "n"` and `add` argument to e.g. add grid beneath the figure
plot(ma, full = NA, intercept = FALSE,

width = 0, horizontal = FALSE, zerolty = NA, type = "n")
grid()
plot(ma, full = NA, intercept = FALSE,

pch = 22, dotcex = 1.5,
col = clr[i], bg = clr[i],
lwd = 6, lend = 1, width = 0, horizontal = FALSE, add = TRUE)

cos2Weights Cos-squared model weights

Description

Calculate the cos-squared model weights, following the algorithm outlined in the appendix to Garth-
waite & Mubwandarikwa (2010).

16 cos2Weights

Usage

cos2Weights(object, ..., data, eps = 1e-06, maxit = 100, predict.args = list())

Arguments

object, ... two or more fitted glm objects, or a list of such, or an "averaging" object.
Currently only lm and glm objects are accepted.

data a test data frame in which to look for variables for use with prediction. If omit-
ted, the fitted linear predictors are used.

eps tolerance for determining convergence.

maxit maximum number of iterations.

predict.args optionally, a list of additional arguments to be passed to predict.

Value

A numeric vector of model weights.

Author(s)

Carsten Dormann, adapted by Kamil Bartoń

References

Garthwaite, P. H. and Mubwandarikwa, E. 2010 Selection of weights for weighted model averaging.
Australian & New Zealand Journal of Statistics 52, 363–382.

Dormann, C. et al. 2018 Model averaging in ecology: a review of Bayesian, information-theoretic,
and tactical approaches for predictive inference. Ecological Monographs 88, 485–504.

See Also

Weights, model.avg

Other model weights: BGWeights(), bootWeights(), jackknifeWeights(), stackingWeights()

Examples

fm <- lm(y ~ X1 + X2 + X3 + X4, Cement, na.action = na.fail)
most efficient way to produce a list of all-subsets models
models <- lapply(dredge(fm, evaluate = FALSE), eval)
ma <- model.avg(models)

test.data <- Cement
Weights(ma) <- cos2Weights(models, data = test.data)
predict(ma, data = test.data)

dredge 17

dredge Automated model selection

Description

Generate a model selection table of models with combinations (subsets) of fixed effect terms in the
global model, with optional model inclusion rules.

Usage

dredge(global.model, beta = c("none", "sd", "partial.sd"), evaluate = TRUE,
rank = "AICc", fixed = NULL, m.lim = NULL, m.min, m.max, subset,
trace = FALSE, varying, extra, ct.args = NULL, deps = attr(allTerms0, "deps"),
cluster = NULL,
...)

S3 method for class 'model.selection'
print(x, abbrev.names = TRUE, warnings = getOption("warn") != -1L, ...)

Arguments

global.model a fitted ‘global’ model object. See ‘Details’ for a list of supported types.

beta indicates whether and how the coefficients are standardized, and must be one of
"none", "sd" or "partial.sd". You can specify just the initial letter. "none"
corresponds to unstandardized coefficients, "sd" and "partial.sd" to coeffi-
cients standardized by SD and Partial SD, respectively. For backwards compat-
ibility, logical value is also accepted, TRUE is equivalent to "sd" and FALSE to
"none". See std.coef.

evaluate whether to evaluate and rank the models. If FALSE, a list of unevaluated calls
is returned.

rank optionally, the rank function returning a sort of an information criterion, to be
used instead AICc, e.g. AIC, QAIC or BIC. See ‘Details’.

fixed optional, either a single-sided formula or a character vector giving names of
terms to be included in all models. Not to be confused with fixed effects. See
‘Subsetting’.

m.lim, m.max, m.min
optionally, the limits c(lower, upper) for the number of terms in a single
model (excluding the intercept). An NA means no limit. See ‘Subsetting’. Spec-
ifying limits as m.min and m.max is allowed for backward compatibility.

subset logical expression or a matrix describing models to be kept in the resulting set.
NULL or TRUE disables subsetting. For details, see ‘Subsetting’.

trace if TRUE or 1, all calls to the fitting function are printed before actual fitting takes
place. If trace > 1, a progress bar is displayed.

18 dredge

varying optionally, a named list describing the additional arguments to vary between
the generated models. Item names correspond to the arguments, and each item
provides a list of choices (i.e. list(arg1 = list(choice1, choice2, ...),
...)). Complex elements in the choice list (such as family objects) should be
either named (uniquely) or quoted (unevaluated, e.g. using alist, see quote),
otherwise the result may be visually unpleasant. See example in Beetle.

extra optional additional statistics to be included in the result, provided as functions,
function names or a list of such (preferably named or quoted). As with the
rank argument, each function must accept as an argument a fitted model object
and return (a value coercible to) a numeric vector. This could be, for instance,
additional information criteria or goodness-of-fit statistics. The character strings
"R^2" and "adjR^2" are treated in a special way and add a likelihood-ratio
based R2 and modified-R2 to the result, respectively (this is more efficient than
using r.squaredLR directly).

x a model.selection object, returned by dredge.
abbrev.names Should term names in the table header be abbreviated when printed? This is the

default. If full names are required, use print() explicitly with this argument
set to FALSE.

warnings if TRUE, errors and warnings issued during the model fitting are printed below
the table (only with pdredge). To permanently remove the warnings, set the
object’s attribute "warnings" to NULL.

ct.args optional list of arguments to be passed to coefTable (e.g. dispersion param-
eter for glm affecting standard errors used in subsequent model averaging).

deps a “dependency matrix” as returned by getAllTerms, attribute "deps". Can be
used to fine-tune marginality exceptions.

cluster if a valid "cluster" object is given, it is used for parallel execution. If NULL or
omitted, execution is single-threaded.
With parallel calculation, an extra argument check is accepted.
See pdredge for details and examples.

... optional arguments for the rank function. Any can be an unevaluated expres-
sion, in which case any x within it will be substituted with the current model.

Details

Models are fitted through repeated evaluation of the modified call extracted from the global.model
(in a similar fashion to update). This approach, while having the advantage that it can be applied
to most model types through the usual formula interface, can have a considerable computational
overhead.

Note that the number of combinations grows exponentially with the number of predictors (2N , less
when interactions are present, see below).

The fitted model objects are not stored in the result. To get (a subset of) the models, use get.models
on the object returned by dredge. Another way to get all the models is to run lapply(dredge(...,
evaluate = FALSE), eval), which avoids fitting models twice.

For a list of model types that can be used as a global.model see the list of supported models.
Modelling functions that do not store a call in their result should be evaluated via a wrapper
function created by updateable.

dredge 19

Information criterion: rank is found by a call to match.fun and may be specified as a function,
a symbol, or as a character string specifying a function to be searched for from the environment
of the call to dredge. It can be also a one-element named list, where the first element is taken as
the rank function. The function rank must accept a model object as its first argument and always
return a scalar.

Interactions: By default, marginality constraints are respected, so “all possible combinations”
include only those containing interactions with their respective main effects and all lower-order
terms. However, if global.model makes an exception to this principle (e.g. due to a nested
design such as a / (b + d)), this will be reflected in the subset models.

Subsetting: There are three ways to constrain the resulting set of models: setting limits to
the number of terms in a model with m.lim, binding term(s) to all models using fixed, and the
subset argument can be used for more complex rules. For a model to be included in the selection
table, its formulation must satisfy all these conditions.
subset may be an expression or a matrix. The latter should be a lower triangular matrix with log-
ical values, where the columns and rows correspond to global.model terms. Value subset["a",
"b"] == FALSE will exclude any model containing both a and b terms.
demo(dredge.subset) has examples of using the subset matrix in conjunction with correlation
matrices to exclude models containing collinear predictors.
In the form of expression, the argument subset acts in a similar fashion to that in the function
subset for data.frames: model terms can be referred to by name as variables in the expression,
with the difference being that are interpreted as logical values (i.e. equal to TRUE if the term exists
in the model).
The expression can contain any of the global.model term names, as well as names of the
varying list items. global.model term names take precedence when identical to names of
varying, so to avoid ambiguity varying variables in subset expression should be enclosed
in V() (e.g. V(family) == "Gamma") assuming that varying is something like list(family =
c("Gamma", ...))).
If item names in varying are missing, the items themselves are coerced to names. Call and sym-
bol elements are represented as character values (via deparse), and anything other than numeric,
logical, character and NULL values is replaced by item numbers (e.g. varying = list(family
= list(gaussian, Gamma) should be referred to as subset = V(family) == 2. This can quickly
become confusing, so it is recommended to use named lists. Examples can be found in demo(dredge.varying).
Term names appearing in fixed and subset must be given exactly as they are returned by
getAllTerms(global.model), which may differ from the original term names (e.g. the inter-
action term components are ordered alphabetically).
The with(x) and with(+x) notation indicates, respectively, any and all interactions including
the main effect term x. This is only effective with marginality exceptions. The extended form
with(x, order) allows to specify the order of interaction of terms of which x is a part. For
instance, with(b, 2:3) selects models with at least one second- or third-order interaction of
variable b. The second (positional) argument is coerced to an integer vector. The “dot” notation
.(x) is an alias for with.
The special variable `*nvar*` (backtick-quoted), in the subset expression is equal to the number
of terms in the model (not the number of estimated parameters).
To make the inclusion of a model term conditional on the presence of another one, the function dc
(“dependency chain”) can be used in the subset expression. dc takes any number of term names

20 dredge

as arguments, and allows a term to be included only if all preceding ones are also present (e.g.
subset = dc(a, b, c) allows for models a, a+b and a+b+c but not b, c, b+c or a+c).
subset expression can have a form of an unevaluated call, expression object, or a one-sided
formula. See ‘Examples’.
Compound model terms (such as interactions, ‘as-is’ expressions within I() or smooths in gam)
should be enclosed within curly brackets (e.g. {s(x,k=2)}), or backticks (like non-syntactic
names, e.g. `s(x, k = 2)`), except when they are arguments to with or dc. Backticks-quoted
names must match exactly (including whitespace) the term names as returned by getAllTerms.

subset expression syntax summary:
a & b indicates that model terms a and b must be present (see Logical Operators)
{log(x,2)} or ‘log(x, 2)‘ represent a complex model term log(x, 2)

V(x) represents a varying item x
with(x) indicates that at least one term containing the main effect term x must be present
with(+x) indicates that all the terms containing the main effect term x must be present
with(x, n:m) indicates that at least one term containing an n-th to m-th order interaction term

of x must be present
dc(a, b, c,...) ‘dependency chain’: b is allowed only if a is present, and c only if both a

and b are present, etc.
‘*nvar*‘ the number of terms in the model.

To simply keep certain terms in all models, use of argument fixed is much more efficient. The
fixed formula is interpreted in the same manner as model formula and so the terms must not be
quoted.

Missing values: Use of na.action = "na.omit" (R’s default) or "na.exclude" in global.model
must be avoided, as it results with sub-models fitted to different data sets if there are missing val-
ues. An error is thrown if it is detected.
It is a common mistake to give na.action as an argument in the call to dredge (typically resulting
in an error from the rank function to which the argument is passed through ‘. . . ’), while the correct
way is either to pass na.action in the call to the global model or to set it as a global option.

Intercept:
If present in the global.model, the intercept will be included in all sub-models.

Methods: There are subset and plot methods, the latter creates a graphical representation of
model weights and per-model term sum of weights. Coefficients can be extracted with coef or
coefTable.

Value

An object of class c("model.selection", "data.frame"), being a data.frame, where each row
represents one model. See model.selection.object for its structure.

Note

Users should keep in mind the hazards that a “thoughtless approach” of evaluating all possible
models poses. Although this procedure is in certain cases useful and justified, it may result in
selecting a spurious “best” model, due to the model selection bias.

dredge 21

“Let the computer find out” is a poor strategy and usually reflects the fact that the researcher did
not bother to think clearly about the problem of interest and its scientific setting (Burnham and
Anderson, 2002).

Author(s)

Kamil Bartoń

See Also

get.models, model.avg. model.sel for manual model selection tables.

Possible alternatives: glmulti in package glmulti and bestglm (bestglm). regsubsets in package
leaps also performs all-subsets regression.

Variable selection through regularization provided by various packages, e.g. glmnet, lars or glmm-
Lasso.

Examples

Example from Burnham and Anderson (2002), page 100:

prevent fitting sub-models to different datasets

options(na.action = "na.fail")

fm1 <- lm(y ~ ., data = Cement)
dd <- dredge(fm1)
subset(dd, delta < 4)

Visualize the model selection table:

par(mar = c(3,5,6,4))
plot(dd, labAsExpr = TRUE)

Model average models with delta AICc < 4
model.avg(dd, subset = delta < 4)

#or as a 95% confidence set:
model.avg(dd, subset = cumsum(weight) <= .95) # get averaged coefficients

#'Best' model
summary(get.models(dd, 1)[[1]])

Not run:
Examples of using 'subset':
keep only models containing X3
dredge(fm1, subset = ~ X3) # subset as a formula
dredge(fm1, subset = expression(X3)) # subset as expression object
the same, but more effective:
dredge(fm1, fixed = "X3")
exclude models containing both X1 and X2 at the same time

22 exprApply

dredge(fm1, subset = !(X1 && X2))
Fit only models containing either X3 or X4 (but not both);
include X3 only if X2 is present, and X2 only if X1 is present.
dredge(fm1, subset = dc(X1, X2, X3) && xor(X3, X4))
the same as above, without "dc"
dredge(fm1, subset = (X1 | !X2) && (X2 | !X3) && xor(X3, X4))

Include only models with up to 2 terms (and intercept)
dredge(fm1, m.lim = c(0, 2))

End(Not run)

Add R^2 and F-statistics, use the 'extra' argument
dredge(fm1, m.lim = c(NA, 1), extra = c("R^2", F = function(x)

summary(x)$fstatistic[[1]]))

with summary statistics:
dredge(fm1, m.lim = c(NA, 1), extra = list(

"R^2", "*" = function(x) {
s <- summary(x)
c(Rsq = s$r.squared, adjRsq = s$adj.r.squared,

F = s$fstatistic[[1]])
})

)

Add other information criteria (but rank with AICc):
dredge(fm1, m.lim = c(NA, 1), extra = alist(AIC, BIC, ICOMP, Cp))

exprApply Apply a function to calls inside an expression

Description

Apply function FUN to each occurence of a call to what() (or a symbol what) in an unevaluated
expression. It can be used for advanced manipulation of expressions. Intended primarily for internal
use.

Usage

exprApply(expr, what, FUN, ..., symbols = FALSE)

Arguments

expr an unevaluated expression.

what character string giving the name of a function. Each call to what inside expr will
be passed to FUN. what can be also a character representation of an operator or
parenthesis (including curly and square brackets) as these are primitive functions
in R. Set what to NA to match all names.

exprApply 23

FUN a function to be applied.

symbols logical value controlling whether FUN should be applied to symbols as well as
calls.

... optional arguments to FUN.

Details

FUN is found by a call to match.fun and can be either a function or a symbol (e.g., a backquoted
name) or a character string specifying a function to be searched for from the environment of the call
to exprApply.

Value

A (modified) expression.

Note

If expr has a source reference information ("srcref" attribute), modifications done by exprApply
will not be visible when printed unless srcref is removed. However, exprApply does remove
source reference from any function expression inside expr.

Author(s)

Kamil Bartoń

See Also

Expression-related functions: substitute, expression, quote and bquote.

Similar function walkCode exists in package codetools.

Functions useful inside FUN: as.name, as.call, call, match.call etc.

Examples

simple usage:
print all Y(...) terms in a formula (note that symbol "Y" is omitted):
Note: if `print` is defined as S4 "standardGeneric", we need to use
'print.default' rather than 'print', or put the call to 'print' inside a
function, i.e. as `function(x) print(x)`:
exprApply(~ X(1) + Y(2 + Y(4)) + N(Y + Y(3)), "Y", print.default)

replace X() with log(X, base = n)
exprApply(expression(A() + B() + C()), c("A", "B", "C"), function(expr, base) {

expr[[2]] <- expr[[1]]
expr[[1]] <- as.name("log")
expr$base <- base
expr

}, base = 10)

###

24 Formula manipulation

TASK: fit lm with two poly terms, varying the degree from 1 to 3 in each.
lm(y ~ poly(X1, degree = a) + poly(X2, degree = b), data = Cement)
for a = {1,2,3} and b = {1,2,3}

First we create a wrapper function for lm. Within it, use "exprApply" to add
"degree" argument to all occurences of "poly()" having "X1" or "X2" as the
first argument. Values for "degree" are taken from arguments "d1" and "d2"

lmpolywrap <- function(formula, d1 = NA, d2 = NA, ...) {
cl <- origCall <- match.call()
cl[[1]] <- as.name("lm")
cl$formula <- exprApply(formula, "poly", function(e, degree, x) {

i <- which(e[[2]] == x)[1]
if(!is.na(i) && !is.na(degree[i])) e$degree <- degree[i]
e

}, degree = c(d1, d2), x = c("X1", "X2"))
cl$d1 <- cl$d2 <- NULL
fit <- eval(cl, parent.frame())
fit$call <- origCall # replace the stored call
fit

}

global model:
fm <- lmpolywrap(y ~ poly(X1) + poly(X2), data = Cement)

Use "dredge" with argument "varying" to generate calls of all combinations of
degrees for poly(X1) and poly(X2). Use "fixed = TRUE" to keep all global model
terms in all models.
Since "dredge" expects that global model has all the coefficients the
submodels can have, which is not the case here, we first generate model calls,
evaluate them and feed to "model.sel"

modCalls <- dredge(fm,
varying = list(d1 = 1:3, d2 = 1:3),
fixed = TRUE,
evaluate = FALSE

)

model.sel(models <- lapply(modCalls, eval))

Note: to fit *all* submodels replace "fixed = TRUE" with:
"subset = (d1==1 || {poly(X1)}) && (d2==1 || {poly(X2)})"
This is to avoid fitting 3 identical models when the matching "poly()" term is
absent.

Formula manipulation Manipulate model formulas

Description

simplify.formula rewrites a formula into shorthand notation. Currently only the factor crossing

get.models 25

operator * is applied, so an expanded expression such as a+b+a:b becomes a*b. expand.formula
does the opposite, additionally expanding other expressions, i.e. all nesting (/), grouping and ^.

Usage

simplify.formula(x)
expand.formula(x)

Arguments

x a formula or an object from which it can be extracted (such as a fitted model
object).

Author(s)

Kamil Bartoń

See Also

formula

delete.response, drop.terms, and reformulate

Examples

simplify.formula(y ~ a + b + a:b + (c + b)^2)
simplify.formula(y ~ a + b + a:b + 0)

expand.formula(~ a * b)

get.models Retrieve models from selection table

Description

Generate or extract a list of fitted model objects from a "model.selection" table or component
models from the averaged model ("averaging" object), optionally using parallel computation in a
cluster.

Usage

get.models(object, subset, cluster = NA, ...)

26 get.models

Arguments

object object returned by dredge, model.sel or model.avg.

subset subset of models, an expression evaluated within the model selection table (see
‘Details’).

cluster optionally, a "cluster" object. If it is a valid cluster, models are evaluated
using parallel computation.

... additional arguments to update the models. For example, one may want to fit
models with REML (e.g. argument REML = TRUE in some modelling functions)
while using ML for model selection.

Details

The argument subset must be explicitely provided. This is to assure that a potentially long list of
models is not fitted unintentionally. To evaluate all models, set subset to NA or TRUE.

If subset is a character vector, it is interpreted as names of rows to be selected.

Value

list of fitted model objects.

Note

"model.selection" tables created by model.sel or averaged models created by model.avg from
a list of model objects (as opposed to those created with model selection tables) store the component
models as part of the object - in these cases get.models simply extracts the items from these
lists. Otherwise the models have to be fitted. Therefore, using get.models following dredge
is not efficient as the requested models are fitted twice. If the number of generated models is
reasonable, consider using lapply(dredge(..., evaluate = FALSE), eval), which generates a
list of all model calls and evaluates them into a list of model objects.

Alternatively, getCall and eval can be used to compute a model out of the "model.selection"
table (e.g. eval(getCall(<model.selection>, i)), where i is the model index or name).

pget.models is still available, but is deprecated.

Author(s)

Kamil Bartoń

See Also

dredge and pdredge, model.avg

makeCluster in packages parallel and snow

GPA 27

Examples

Mixed models:

fm2 <- lme(distance ~ age + Sex, data = Orthodont,
random = ~ 1 | Subject, method = "ML")

ms2 <- dredge(fm2)

Get top-most models, but fitted by REML:
(confset.d4 <- get.models(ms2, subset = delta < 4, method = "REML"))

Not run:
Get the top model:
get.models(ms2, subset = 1)[[1]]

End(Not run)

GPA Grade Point Average data

Description

First-year college Grade Point Average (GPA) from Graybill and Iyer (1994).

Usage

GPA

Format

GPA is a data frame with 5 variables. y is the first-year college Grade Point Average (GPA) and
x1 -x4 are four predictor variables from standardized tests (SAT) administered before matriculation.

y GPA

x1 math score on the SAT

x2 verbal score on the SAT

x3 high school math

x4 high school English

Source

Graybill, F.A. and Iyer, H.K. (1994). Regression analysis: concepts and applications. Duxbury
Press, Belmont, CA.

28 Information criteria

References

Burnham, K. P. and Anderson, D. R. 2002 Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

Information criteria Various information criteria

Description

Calculate Mallows’ Cp and Bozdogan’s ICOMP and CAIFC information criteria.

Extract or calculate Deviance Information Criterion from MCMCglmm and merMod object.

Usage

Cp(object, ..., dispersion = NULL)
ICOMP(object, ..., REML = NULL)
CAICF(object, ..., REML = NULL)
DIC(object, ...)

Arguments

object a fitted model object (in case of ICOMP and CAICF, logLik and vcov methods
must exist for the object). For DIC, an object of class "MCMCglmm" or "merMod".

... optionally more fitted model objects.

dispersion the dispersion parameter. If NULL, it is inferred from object.

REML optional logical value, passed to the logLik method indicating whether the re-
stricted log-likelihood or log-likelihood should be used. The default is to use the
method used for model estimation.

Details

Mallows’ Cp statistic is the residual deviance plus twice the estimate of σ2 times the residual de-
grees of freedom. It is closely related to AIC (and a multiple of it if the dispersion is known).

ICOMP (I for informational and COMP for complexity) penalizes the covariance complexity of the
model, rather than the number of parameters directly.

CAICF (C is for ‘consistent’ and F denotes the use of the Fisher information matrix) includes with
penalty the natural logarithm of the determinant of the estimated Fisher information matrix.

Value

If just one object is provided, the functions return a numeric value with the corresponding IC;
otherwise a data.frame with rows corresponding to the objects is returned.

jackknifeWeights 29

References

Mallows, C. L. 1973 Some comments on Cp. Technometrics 15, 661–675.

Bozdogan, H. and Haughton, D. M. A. (1998) Information complexity criteria for regression mod-
els. Comp. Stat. & Data Analysis 28, 51–76.

Anderson, D. R. and Burnham, K. P. 1999 Understanding information criteria for selection among
capture-recapture or ring recovery models. Bird Study 46, 14–21.

Spiegelhalter, D. J., Best, N. G., Carlin, B. R., van der Linde, A. 2002 Bayesian measures of model
complexity and fit. Journal of the Royal Statistical Society Series B-Statistical Methodology 64,
583–616.

See Also

AIC and BIC in stats, AICc. QIC for GEE model selection. extractDIC in package arm, on which
the (non-visible) method extractDIC.merMod used by DIC is based.

jackknifeWeights Jackknifed model weights

Description

Compute model weights optimized for jackknifed model fits.

Usage

jackknifeWeights(
object, ..., data, type = c("loglik", "rmse"),
family = NULL, weights = NULL,
optim.method = "BFGS", maxit = 1000, optim.args = list(),
start = NULL, force.update = FALSE, py.matrix = FALSE

)

Arguments

object, ... two or more fitted glm objects, or a list of such, or an "averaging" object.

data a data frame containing the variables in the model. It is optional if all models
are glm.

type a character string specifying the function to minimize. Either "rmse" or "loglik".

family used only if type = "loglik", a family object to be used for likelihood calcu-
lation. Not needed if all models share the same family and link function.

weights an optional vector of ‘prior weights’ to be used in the model fitting process.
Should be NULL or a numeric vector.

optim.method optional, optimisation method, passed to optim.

maxit optional, the maximum number of iterations, passed to optim.

optim.args optional list of other arguments passed to optim.

30 jackknifeWeights

start starting values for model weights. Numeric of length equal the number of mod-
els.

force.update for glm, the glm.fit function is used for fitting models to the train data, which
is much more efficient. Set to TRUE to use update instead.

py.matrix either a boolean value, then if TRUE a jackknifed prediction matrix is returned
and if FALSE a vector of jackknifed model weights, or a N×M matrix (number of
cases × number of models) that is interpreted as a jackknifed prediction matrix
and it is used for optimisation (i.e. the jackknife procedure is skipped).

Details

Model weights are chosen (using optim) to minimise RMSE or log-likelihood of the prediction for
data point i , of a model fitted omitting that data point i . The jackknife procedure is therefore run
for all provided models and for all data points.

Value

The function returns a numeric vector of model weights.

Note

This procedure can give variable results depending on the optimisation method and starting values.
It is therefore advisable to make several replicates using different optim.methods. See optim for
possible values for this argument.

Author(s)

Kamil Bartoń. Carsten Dormann

References

Hansen, B. E. and Racine, J. S. 2012 Jackknife model averaging. Journal of Econometrics 979,
38–46

Dormann, C. et al. 2018 Model averaging in ecology: a review of Bayesian, information-theoretic,
and tactical approaches for predictive inference. Ecological Monographs 88, 485–504.

See Also

Weights, model.avg

Other model weights: BGWeights(), bootWeights(), cos2Weights(), stackingWeights()

Examples

fm <- glm(Prop ~ mortality * dose, binomial(), Beetle, na.action = na.fail)

fits <- lapply(dredge(fm, eval = FALSE), eval)

amJk <- amAICc <- model.avg(fits)
set.seed(666)

loo 31

Weights(amJk) <- jackknifeWeights(fits, data = Beetle)

coef(amJk)
coef(amAICc)

loo Leave-one-out cross-validation

Description

Compute RMSE/log-likelihood based on leave-one-out cross-validation.

Usage

loo(object, type = c("loglik", "rmse"), ...)

Arguments

object a fitted object model, currently only lm/glm is accepted.

type the criterion to use, given as a character string, either "rmse" for Root-Mean-
Square Error or "loglik" for log-likelihood.

... other arguments are currently ignored.

Details

Leave-one-out cross validation is a K -fold cross validation, with K equal to the number of data
points in the set N . For all i from 1 to N , the model is fitted to all the data except for i -th row and a
prediction is made for that value. The average error is computed and used to evaluate the model.

Value

A single numeric value of RMSE or mean log-likelihood.

Author(s)

Kamil Bartoń, based on code by Carsten Dormann

References

Dormann, C. et al. 2018 Model averaging in ecology: a review of Bayesian, information-theoretic,
and tactical approaches for predictive inference. Ecological Monographs 88, 485–504.

32 merge.model.selection

Examples

fm <- lm(y ~ X1 + X2 + X3 + X4, Cement)
loo(fm, type = "l")
loo(fm, type = "r")

Compare LOO_RMSE and AIC/c
options(na.action = na.fail)
dd <- dredge(fm, rank = loo, extra = list(AIC, AICc), type = "rmse")
plot(loo ~ AIC, dd, ylab = expression(LOO[RMSE]), xlab = "AIC/c")
points(loo ~ AICc, data = dd, pch = 19)
legend("topleft", legend = c("AIC", "AICc"), pch = c(1, 19))

merge.model.selection Combine model selection tables

Description

Combine two or more model selection tables.

Usage

S3 method for class 'model.selection'
merge(x, y, suffixes = c(".x", ".y"), ...)

S3 method for class 'model.selection'
rbind(..., deparse.level = 1, make.row.names = TRUE)

Arguments

x, y, ... model.selection objects to be combined. (. . . ignored in merge)

suffixes a character vector with two elements that are appended respectively to row
names of the combined tables.

make.row.names logical indicating if unique and valid row.names should be constructed from the
arguments.

deparse.level ignored.

Value

A "model.selection" object containing models (rows) from all provided tables.

Model utilities 33

Note

Both ∆IC values and Akaike weights are recalculated in the resulting tables.

Models in the combined model selection tables must be comparable, i.e. fitted to the same data,
however only very basic checking is done to verify that. The models must also be ranked by the
same information criterion.

Unlike the merge method for data.frame, this method appends second table to the first (similarly
to rbind).

Author(s)

Kamil Bartoń

See Also

dredge, model.sel, merge, rbind.

Examples

Not run:
require(mgcv)

ms1 <- dredge(glm(Prop ~ dose + I(dose^2) + log(dose) + I(log(dose)^2),
data = Beetle, family = binomial, na.action = na.fail))

fm2 <- gam(Prop ~ s(dose, k = 3), data = Beetle, family = binomial)

merge(ms1, model.sel(fm2))

End(Not run)

Model utilities Model utility functions

Description

These functions extract or calculate various values from provided fitted model objects(s). They are
mainly meant for internal use.

coeffs extracts model coefficients;

getAllTerms extracts independent variable names from a model object;

coefTable extracts a table of coefficients, standard errors and associated degrees of freedom when
possible;

get.response extracts response variable from fitted model object;

model.names generates shorthand (alpha)numeric names for one or several fitted models.

34 Model utilities

Usage

coeffs(model)

getAllTerms(x, ...)
S3 method for class 'terms'
getAllTerms(x, intercept = FALSE, offset = TRUE, ...)

coefTable(model, ...)
S3 method for class 'averaging'
coefTable(model, full = FALSE, adjust.se = TRUE, ...)
S3 method for class 'lme'
coefTable(model, adjustSigma, ...)
S3 method for class 'gee'
coefTable(model, ..., type = c("naive", "robust"))

get.response(x, data = NULL, ...)

model.names(object, ..., labels = NULL, use.letters = FALSE)

Arguments

model a fitted model object.

object a fitted model object or a list of such objects.

x a fitted model object or a formula.

offset should ‘offset’ terms be included?

intercept should terms names include the intercept?

full, adjust.se logical, apply to "averaging" objects. If full is TRUE, the full model-averaged
coefficients are returned, and subset-averaged ones otherwise. If adjust.se is
TRUE, inflated standard errors are returned. See ‘Details’ in par.avg.

adjustSigma See summary.lme.

type for GEE models, the type of covariance estimator to calculate returned standard
errors on. Either "naive" or "robust" (‘sandwich’).

labels optionally, a character vector with names of all the terms, e.g. from a global
model. model.names enumerates the model terms in order of their appearance
in the list and in the models. Therefore changing the order of the models leads
to different names. Providing labels prevents that.

... in model.names, more fitted model objects. In coefTable arguments that are
passed to appropriate vcov or summary method (e.g. dispersion parameter for
glm may be used here). In get.response, if data is given, arguments to be
passed to model.frame. In other functions may be silently ignored.

data a data.frame, list or environment (or object coercible to a data.frame),
containing the variables in x. Required only if x is a formula, otherwise it can
be used to get the response variable for a different data set.

use.letters logical, whether letters should be used instead of numeric codes.

model.avg 35

Details

The functions coeffs, getAllTerms and coefTable provide interface between the model object
and model.avg (and dredge). Custom methods can be written to provide support for additional
classes of models.

Note

coeffs’s value is in most cases identical to that returned by coef, the only difference being it returns
fixed effects’ coefficients for mixed models, and the value is always a named numeric vector.

Use of tTable is deprecated in favour of coefTable.

Author(s)

Kamil Bartoń

model.avg Model averaging

Description

Model averaging based on an information criterion.

Usage

model.avg(object, ..., revised.var = TRUE)

Default S3 method:
model.avg(object, ..., beta = c("none", "sd", "partial.sd"),

rank = NULL, rank.args = NULL, revised.var = TRUE,
dispersion = NULL, ct.args = NULL)

S3 method for class 'model.selection'
model.avg(object, subset, fit = FALSE, ..., revised.var = TRUE)

Arguments

object a fitted model object or a list of such objects, or a "model.selection" object.
See ‘Details’.

... for default method, more fitted model objects. Otherwise, arguments that are
passed to the default method.

beta indicates whether and how the component models’ coefficients should be stan-
dardized. See the argument’s description in dredge.

36 model.avg

rank optionally, a rank function (returning an information criterion) to use instead of
AICc, e.g. BIC or QAIC, may be omitted if object is a model list returned by
get.models or a "model.selection" object. See ‘Details’.

rank.args optional list of arguments for the rank function. If one is an expression, an x
within it is substituted with a current model.

revised.var logical, indicating whether to use the revised formula for standard errors. See
par.avg.

dispersion the dispersion parameter for the family used. See summary.glm. This is used
currently only with glm, is silently ignored otherwise.

ct.args optional list of arguments to be passed to coefTable (besides dispersion).

subset see subset method for "model.selection" object.

fit if TRUE, the component models are fitted using get.models. See ‘Details’.

Details

model.avg may be used either with a list of models or directly with a model.selection object (e.g.
returned by dredge). In the latter case, the models from the model selection table are not evaluated
unless the argument fit is set to TRUE or some additional arguments are present (such as rank or
dispersion). This results in a much faster calculation, but has certain drawbacks, because the fitted
component model objects are not stored, and some methods (e.g. predict, fitted, model.matrix
or vcov) would not be available with the returned object. Otherwise, get.models is called prior to
averaging, and . . . are passed to it.

For a list of model types that are accepted see list of supported models.

rank is found by a call to match.fun and typically is specified as a function or a symbol or a
character string specifying a function to be searched for from the environment of the call to lapply.
rank must be a function able to accept model as a first argument and must always return a numeric
scalar.

Several standard methods for fitted model objects exist for class averaging, including summary,
predict, coef, confint, formula, and vcov.

coef, vcov, confint and coefTable accept argument full that if set to TRUE, the full model-
averaged coefficients are returned, rather than subset-averaged ones (when full = FALSE, being the
default).

logLik returns a list of logLik objects for the component models.

Value

An object of class "averaging" is a list with components:

msTable a data.frame with log-likelihood, IC, ∆IC and ‘Akaike weights’ for the com-
ponent models. Its attribute "term.codes" is a named vector with numerical
representation of the terms in the row names of msTable.

coefficients a matrix of model-averaged coefficients. “full” coefficients in the first row,
“subset” coefficients in the second row. See ‘Note’

coefArray a 3-dimensional array of component models’ coefficients, their standard errors
and degrees of freedom.

model.avg 37

sw object of class sw containing per-model term sum of model weights over all of
the models in which the term appears.

formula a formula corresponding to the one that would be used in a single model. The
formula contains only the averaged (fixed) coefficients.

call the matched call.

The object has the following attributes:

rank the rank function used.

modelList optionally, a list of all component model objects. Only if the object was created
with model objects (and not model selection table).

beta Corresponds to the function argument.

nobs number of observations.

revised.var Corresponds to the function argument.

Note

The ‘subset’ (or ‘conditional’) average only averages over the models where the parameter appears.
An alternative, the ‘full’ average assumes that a variable is included in every model, but in some
models the corresponding coefficient (and its respective variance) is set to zero. Unlike the ‘subset
average’, it does not have a tendency of biasing the value away from zero. The ‘full’ average is a
type of shrinkage estimator, and for variables with a weak relationship to the response it is smaller
than ‘subset’ estimators.

Averaging models with different contrasts for the same factor would yield nonsense results. Cur-
rently, no checking for contrast consistency is done.

print method provides a concise output (similarly as for lm). To print more details use summary
function, and confint to get confidence intervals.

Author(s)

Kamil Bartoń

References

Burnham, K. P. and Anderson, D. R. 2002 Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

Lukacs, P. M., Burnham K. P. and Anderson, D. R. 2009 Model selection bias and Freedman’s
paradox. Annals of the Institute of Statistical Mathematics 62, 117–125.

See Also

See par.avg for more details of model-averaged parameter calculation.

dredge, get.models
AICc has examples of averaging models fitted by REML.

modavg in package AICcmodavg, and coef.glmulti in package glmulti also perform model av-
eraging.

38 model.sel

Examples

Example from Burnham and Anderson (2002), page 100:
fm1 <- lm(y ~ ., data = Cement, na.action = na.fail)
(ms1 <- dredge(fm1))

#models with delta.aicc < 4
summary(model.avg(ms1, subset = delta < 4))

#or as a 95% confidence set:
avgmod.95p <- model.avg(ms1, cumsum(weight) <= .95)
confint(avgmod.95p)

Not run:
The same result, but re-fitting the models via 'get.models'
confset.95p <- get.models(ms1, cumsum(weight) <= .95)
model.avg(confset.95p)

Force re-fitting the component models
model.avg(ms1, cumsum(weight) <= .95, fit = TRUE)
Models are also fitted if additional arguments are given
model.avg(ms1, cumsum(weight) <= .95, rank = "AIC")

End(Not run)

Not run:
using BIC (Schwarz's Bayesian criterion) to rank the models
BIC <- function(x) AIC(x, k = log(length(residuals(x))))
model.avg(confset.95p, rank = BIC)
the same result, using AIC directly, with argument k
'x' in a quoted 'rank' argument is substituted with a model object
(in this case it does not make much sense as the number of observations is
common to all models)
model.avg(confset.95p, rank = AIC, rank.args = alist(k = log(length(residuals(x)))))

End(Not run)

model.sel model selection table

Description

Build a model selection table.

Usage

model.sel(object, ...)

Default S3 method:

model.sel 39

model.sel(object, ..., rank = NULL, rank.args = NULL,
beta = c("none", "sd", "partial.sd"), extra)

S3 method for class 'model.selection'
model.sel(object, rank = NULL, rank.args = NULL, fit = NA,
..., beta = c("none", "sd", "partial.sd"), extra)

model.sel(x) <- value

Arguments

object, value a fitted model object, a list of such objects, or a "model.selection" object.

... more fitted model objects.

rank optional, custom rank function (returning an information criterion) to use instead
of the default AICc, e.g. QAIC or BIC, may be omitted if object is a model list
returned by get.models.

rank.args optional list of arguments for the rank function. If one is an expression, an x
within it is substituted with a current model.

fit logical, stating whether the model objects should be re-fitted if they are not
stored in the "model.selection" object. Set to NA to re-fit the models only if
this is needed. See ‘Details’.

beta indicates whether and how the component models’ coefficients should be stan-
dardized. See the argument’s description in dredge.

extra optional additional statistics to include in the result, provided as functions, func-
tion names or a list of such (best if named or quoted). See dredge for details.

x a "model.selection" object.

Details

model.sel used with "model.selection" object will re-fit model objects, unless they are stored
in object (in attribute "modelList"), if argument extra is provided, or the requested beta is
different than object’s "beta" attribute, or the new rank function cannot be applied directly to
logLik objects, or new rank.args are given (unless argument fit = FALSE).

The replacement function appends new models to the existing "model.selection" object.

Value

An object of class c("model.selection", "data.frame"), being a data.frame, where each row
represents one model and columns contain useful information about each model: the coefficients,
df, log-likelihood, the value of the information criterion used, ∆IC and ‘Akaike weight’. If any
arguments differ between the modelling function calls, the result will include additional columns
showing them (except for formulas and some other arguments).

See model.selection.object for its structure.

Author(s)

Kamil Bartoń

40 model.selection.object

See Also

dredge, AICc, list of supported models.

Possible alternatives: ICtab (in package bbmle), or aictab (AICcmodavg).

Examples

Cement$X1 <- cut(Cement$X1, 3)
Cement$X2 <- cut(Cement$X2, 2)

fm1 <- glm(formula = y ~ X1 + X2 * X3, data = Cement)
fm2 <- update(fm1, . ~ . - X1 - X2)
fm3 <- update(fm1, . ~ . - X2 - X3)

ranked with AICc by default
(msAICc <- model.sel(fm1, fm2, fm3))

ranked with BIC
model.sel(fm1, fm2, fm3, rank = AIC, rank.args = alist(k = log(nobs(x))))
or
model.sel(msAICc, rank = AIC, rank.args = alist(k = log(nobs(x))))
or
update(msAICc, rank = AIC, rank.args = alist(k = log(nobs(x))))

appending new models:
model.sel(msAICc) <- update(fm1, . ~ 1)

model.selection.object

Description of Model Selection Objects

Description

An object of class "model.selection" holds a table of model coefficients and ranking statistics. It
is produced by dredge or model.sel.

Value

The object is a data.frame with additional attributes. Each row represents one model. The models
are ordered by the information criterion value specified by rank (lowest on top).

Data frame columns:

<model terms> For numeric covariates these columns hold coefficent value, for factors their
presence in the model. If the term is not present in a model, value is NA.

<varying arguments>

Optional. If any arguments differ between the modelling function calls (ex-
cept for formulas and some other arguments), these will be held in additional
columns (of class "factor").

MuMIn-models 41

df Number of model parameters

logLik Log-likelihood (or quasi-likelihood for GEE)

<rank> Information criterion value

delta ∆IC

weight ‘Akaike weights’.

Attributes:

model.calls A list containing model calls (arranged in the same order as in the table). A
model call can be retrieved with getCall(*, i) where i is a vector of model
index or name (if given as character string).

global The global.model object

global.call Call to the global.model

terms A character string holding all term names. Attribute "interceptLabel" gives
the name of the intercept term.

rank The rank function used

beta A character string, representing the coefficient standardizing method used. Ei-
ther "none", "sd" or "partial.sd"

coefTables List of matrices of class "coefTable" containing each model’s coefficients with
std. errors and associated dfs

nobs Number of observations

warnings optional (pdredge only). A list of errors and warnings issued by the modelling
function during the fitting, with a model number appended to each.

It is not recommended to directly access the attributes. Instead, use extractor functions if possible.
These include getCall for retrieving model calls, coefTable and coef for coefficients, and nobs.
logLik extracts list of model log-likelihoods (as "logLik" objects), and Weights extracts ‘Akaike
weights’.

The object has class c("model.selection", "data.frame").

See Also

dredge, model.sel.

MuMIn-models List of supported models

Description

List of model classes accepted by model.avg, model.sel, and dredge.

42 MuMIn-models

Details

Fitted model objects that can be used with model selection and model averaging functions include
those produced by:

• lm, glm (package stats);
• rlm, glm.nb and polr (MASS);
• multinom (nnet);
• lme, gls (nlme);
• lmer, glmer (lme4);
• cpglm, cpglmm (cplm);
• gam, gamm* (mgcv);
• gamm4* (gamm4);
• gamlss (gamlss);
• glmmML (glmmML);
• glmmadmb (glmmADMB from R-Forge);
• glmmTMB (glmmTMB);
• MCMCglmm* (MCMCglmm);
• asreml (non-free commercial package asreml; allows only for REML comparisons);
• hurdle, zeroinfl (pscl);
• negbin, betabin (class "glimML"), package aod);
• aodml, aodql (aods3);
• betareg (betareg);
• brglm (brglm);
• *sarlm models, spautolm (spatialreg);
• spml* (if fitted by ML, splm);
• coxph, survreg (survival);
• coxme, lmekin (coxme);
• rq (quantreg);
• clm and clmm (ordinal);
• logistf (logistf);
• crunch*, pgls (caper);
• maxlike (maxlike);
• most "unmarkedFit" objects from package unmarked);
• mark and related functions (class mark from package RMark). Currently dredge can only

manipulate formula element of the argument model.parameters, keeping its other elements
intact.

Generalized Estimation Equation model implementations: geeglm from package geepack, gee
from gee, geem from geeM, wgeesel from wgeesel, and yags from yags (on R-Forge) can be
used with QIC as the selection criterion.
Other classes are also likely to be supported, in particular if they inherit from one of the above
classes. In general, the models averaged with model.avg may belong to different types (e.g. glm
and gam), provided they use the same data and response, and if it is valid to do so. This applies also
to constructing model selection tables with model.sel.

nested 43

Note

* In order to use gamm, gamm4, spml (> 1.0.0), crunch or MCMCglmm with dredge, an updateable
wrapper for these functions should be created.

See Also

model.avg, model.sel and dredge.

nested Identify nested models

Description

Find models that are ‘nested’ within each model in the model selection table.

Usage

nested(x, indices = c("none", "numeric", "rownames"), rank = NULL)

Arguments

x a "model.selection" object (result of dredge or model.sel).

indices if omitted or "none" then the function checks if, for each model, there are any
higher ranked models nested within it. If "numeric" or "rownames", indices or
names of all nested models are returned. See “Value”.

rank the name of the column with the ranking values (defaults to the one before
“delta”). Only used if indices is "none".

Details

In model comparison, a model is said to be “nested” within another model if it contains a subset of
parameters of the latter model, but does not include other parameters (e.g. model ‘A+B’ is nested
within ‘A+B+C’ but not ‘A+C+D’).

This function can be useful in a model selection approach suggested by Richards (2008), in which
more complex variants of any model with a lower IC value are excluded from the candidate set.

Value

A vector of length equal to the number of models (table rows).

If indices = "none" (the default), it is a vector of logical values where i-th element is TRUE if any
model(s) higher up in the table are nested within it (i.e. if simpler models have lower IC pointed by
rank).

For indices other than "none", the function returns a list of vectors of numeric indices or names
of models nested within each i-th model.

44 par.avg

Note

This function determines nesting based only on fixed model terms, within groups of models sharing
the same ‘varying’ parameters (see dredge and example in Beetle).

Author(s)

Kamil Bartoń

References

Richards, S. A., Whittingham, M. J., Stephens, P. A. 2011 Model selection and model averaging in
behavioural ecology: the utility of the IT-AIC framework. Behavioral Ecology and Sociobiology
65, 77–89.

Richards, S. A. 2008 Dealing with overdispersed count data in applied ecology. Journal of Applied
Ecology 45, 218–227.

See Also

dredge, model.sel

Examples

fm <- lm(y ~ X1 + X2 + X3 + X4, data = Cement, na.action = na.fail)
ms <- dredge(fm)

filter out overly complex models according to the
"nesting selection rule":
subset(ms, !nested(.)) # dot represents the ms table object

print model "4" and all models nested within it
nst <- nested(ms, indices = "row")
ms[c("4", nst[["4"]])]

ms$nested <- sapply(nst, paste, collapse = ",")

ms

par.avg Parameter averaging

Description

Average a coefficient with standard errors based on provided weights. This function is intended
chiefly for internal use.

par.avg 45

Usage

par.avg(x, se, weight, df = NULL, level = 1 - alpha, alpha = 0.05,
revised.var = TRUE, adjusted = TRUE)

Arguments

x vector of parameters.
se vector of standard errors.
weight vector of weights.
df optional vector of degrees of freedom.
alpha, level significance level for calculating confidence intervals.
revised.var logical, should the revised formula for standard errors be used? See ‘Details’.
adjusted logical, should the inflated standard errors be calculated? See ‘Details’.

Details

Unconditional standard errors are square root of the variance estimator, calculated either according
to the original equation in Burnham and Anderson (2002, equation 4.7), or a newer, revised formula
from Burnham and Anderson (2004, equation 4) (if revised.var = TRUE, this is the default). If
adjusted = TRUE (the default) and degrees of freedom are given, the adjusted standard error esti-
mator and confidence intervals with improved coverage are returned (see Burnham and Anderson
2002, section 4.3.3).

Value

par.avg returns a vector with named elements:

Coefficient model coefficients
SE unconditional standard error
Adjusted SE adjusted standard error
Lower CI, Upper CI

unconditional confidence intervals.

Author(s)

Kamil Bartoń

References

Burnham, K. P. and Anderson, D. R. 2002 Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed.

Burnham, K. P. and Anderson, D. R. 2004 Multimodel inference - understanding AIC and BIC in
model selection. Sociological Methods & Research 33, 261–304.

See Also

model.avg for model averaging.

46 pdredge

pdredge Automated model selection using parallel computation

Description

Parallelized version of dredge.

Usage

pdredge(global.model, cluster = NULL,
beta = c("none", "sd", "partial.sd"), evaluate = TRUE, rank = "AICc",
fixed = NULL, m.lim = NULL, m.min, m.max, subset, trace = FALSE,
varying, extra, ct.args = NULL, deps = attr(allTerms0, "deps"),
check = FALSE, ...)

Arguments

global.model, beta, rank, fixed, m.lim, m.max, m.min, subset, varying,
extra, ct.args, deps, ...

see dredge.

evaluate whether to evaluate and rank the models. If FALSE, a list of unevaluated calls
is returned and cluster is not used.

trace displays the generated calls, but may not work as expected since the models are
evaluated in batches rather than one by one.

cluster either a valid "cluster" object, or NULL for a single threaded execution.

check either integer or logical value controlling how much checking for existence and
correctness of dependencies is done on the cluster nodes. See ‘Details’.

Details

All the dependencies for fitting the global.model, including the data and any objects that the mod-
elling function will use must be exported to the cluster worker nodes (e.g. via clusterExport). The
required packages must be also loaded thereinto (e.g. via clusterEvalQ(..., library(package)),
before the cluster is used by pdredge.

If check is TRUE or positive, pdredge tries to check whether all the variables and functions used in
the call to global.model are present in the cluster nodes’ .GlobalEnv before proceeding further.
This will cause false errors if some arguments of the model call (other than subset) would be
evaluated in the data environment. In that case is desirable to use check = FALSE (the default).

If check is TRUE or greater than one, pdredge will compare the global.model updated on the
cluster nodes with the one given as an argument.

Value

See dredge.

pdredge 47

Note

As of version 1.45.0, using pdredge directly is deprecated. Use dredge instead and provide
cluster argument.

Author(s)

Kamil Bartoń

See Also

makeCluster and other cluster related functions in packages parallel or snow.

Examples

One of these packages is required:
Not run: require(parallel) || require(snow)

From example(Beetle)

Beetle100 <- Beetle[sample(nrow(Beetle), 100, replace = TRUE),]

fm1 <- glm(Prop ~ dose + I(dose^2) + log(dose) + I(log(dose)^2),
data = Beetle100, family = binomial, na.action = na.fail)

msubset <- expression(xor(dose, `log(dose)`) & (dose | !`I(dose^2)`)
& (`log(dose)` | !`I(log(dose)^2)`))

varying.link <- list(family = alist(logit = binomial("logit"),
probit = binomial("probit"), cloglog = binomial("cloglog")))

Set up the cluster
clusterType <- if(length(find.package("snow", quiet = TRUE))) "SOCK" else "PSOCK"
clust <- try(makeCluster(getOption("cl.cores", 2), type = clusterType))

clusterExport(clust, "Beetle100")

noticeable gain only when data has about 3000 rows (Windows 2-core machine)
print(system.time(dredge(fm1, subset = msubset, varying = varying.link)))
print(system.time(dredge(fm1, cluster = FALSE, subset = msubset,

varying = varying.link)))
print(system.time(pdd <- dredge(fm1, cluster = clust, subset = msubset,

varying = varying.link)))

print(pdd)

Not run:
Time consuming example with 'unmarked' model, based on example(pcount).
Having enough patience you can run this with 'demo(pdredge.pcount)'.
library(unmarked)
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,

48 plot.model.selection

obsCovs = mallard.obs)
(ufm.mallard <- pcount(~ ivel + date + I(date^2) ~ length + elev + forest,

mallardUMF, K = 30))
clusterEvalQ(clust, library(unmarked))
clusterExport(clust, "mallardUMF")

'stats4' is needed for AIC to work with unmarkedFit objects but is not
loaded automatically with 'unmarked'.
require(stats4)
invisible(clusterCall(clust, "library", "stats4", character.only = TRUE))

#system.time(print(pdd1 <- dredge(ufm.mallard,
subset = `p(date)` | !`p(I(date^2))`, rank = AIC)))

system.time(print(pdd2 <- dredge(ufm.mallard, cluster = clust,
subset = `p(date)` | !`p(I(date^2))`, rank = AIC, extra = "adjR^2")))

best models and null model
subset(pdd2, delta < 2 | df == min(df))

Compare with the model selection table from unmarked
the statistics should be identical:
models <- get.models(pdd2, delta < 2 | df == min(df), cluster = clust)

modSel(fitList(fits = structure(models, names = model.names(models,
labels = getAllTerms(ufm.mallard)))), nullmod = "(Null)")

End(Not run)

stopCluster(clust)

plot.model.selection Visualize model selection table

Description

Produces a graphical representation of model weights and terms.

Usage

S3 method for class 'model.selection'
plot(
x,
ylab = NULL, xlab = NULL, main = "Model selection table",
labels = NULL, terms = NULL, labAsExpr = TRUE,
vlabels = rownames(x), mar.adj = TRUE,
col = NULL, col.mode = 2,

plot.model.selection 49

bg = "white", border = par("col"),
par.lab = NULL, par.vlab = NULL,
axes = TRUE, ann = TRUE,
...

)

Arguments

x a "model.selection" object.
xlab, ylab, main labels for the x and y axes, and the main title for the plot.
labels optional, a character vector or an expression containing model term labels (to

appear on top side of the plot). Its length must be equal to number of displayed
model terms. Defaults to the model term names.

terms which terms to include (default NULL means all terms).
labAsExpr logical, indicating whether the term names should be interpreted (parsed) as R

expressions for prettier labels. See also plotmath.
vlabels alternative labels for the table rows (i.e. model names)
mar.adj logical indicating whether the top and right margin should be enlarged if neces-

sary to fit the labels.
col vector or a matrix of colours for the non-empty grid cells. See ’Details’. If col

is given as a matrix, the colours are applied to rows and columns. How it is done
is governed by the argument col.mode.

col.mode either numeric or "value", specifies cell colouring mode. See ’Details’.
bg background colour for the empty cells.
border border colour for cells and axes.
par.lab, par.vlab

optional lists of arguments and graphical parameters for drawing term labels (top
axis) and model names (right axis), respectively. Items of par.lab are passed
as arguments to mtext, and those of par.vlab are passed to axis.

axes, ann logical values indicating whether the axis and annotation should appear on the
plot.

... further graphical parameters to be set for the plot.

Details

Colours:
If col.mode = 0, the colours are recycled: if col is a matrix, recycling takes place both per row
and per column. If col.mode > 0, the colour values in the columns are interpolated and assigned
according to the model weights. Higher values shift the colours for models with lower model
weights more forward. See also colorRamp. If col.mode < 0 or "value" (partially matched,
case-insensitive) and col has two or more elements, colours are used to represent coefficient
values: the first element in col is used for categorical predictors, the rest for continuous values.
The default is grey for factors and HCL palette "Blue-Red 3" otherwise, ranging from blue for
negative values to red for positive ones.

The following arguments are useful for adjusting label size and position in par.lab and par.vlab
: cex, las (see par), line and hadj (see mtext and axis).

50 predict.averaging

Author(s)

Kamil Bartoń

See Also

plot.default, par, MuMIn-package

Examples

dd <- dredge(lm(formula = y ~ ., data = Cement, na.action = na.fail))
plot(dd,

colours by coefficient value:
col.mode = "value",
par.lab = list(las = 2, line = 1.2, cex = 1),
bg = "gray30",
change labels for the models to Akaike weights:
vlabels = parse(text = paste("omega ==", round(Weights(dd), 2)))
)

plot(dd, col = 2:3, col.mode = 0) # colour recycled by row
plot(dd, col = cbind(2:3, 4:5), col.mode = 0) # colour recycled by row and column
plot(dd, col = 2:3, col.mode = 1) # colour gradient by model weight

predict.averaging Predict method for averaged models

Description

Model-averaged predictions, optionally with standard errors.

Usage

S3 method for class 'averaging'
predict(object, newdata = NULL, se.fit = FALSE,
interval = NULL, type = NA, backtransform = FALSE, full = TRUE, ...)

Arguments

object an object returned by model.avg.

newdata optional data.frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

se.fit logical, indicates if standard errors should be returned. This has any effect only
if the predict methods for each of the component models support it.

interval currently not used.

type the type of predictions to return (see documentation for predict appropriate for
the class of used component models). If omitted, the default type is used. See
‘Details’.

predict.averaging 51

backtransform if TRUE, the averaged predictions are back-transformed from link scale to re-
sponse scale. This makes sense provided that all component models use the
same family, and the prediction from each of the component models is calcu-
lated on the link scale (as specified by type. For glm, use type = "link"). See
‘Details’.

full if TRUE, the full model-averaged coefficients are used (only if se.fit = FALSE
and the component objects are a result of lm).

... arguments to be passed to respective predict method (e.g. level for lme
model).

Details

predicting is possible only with averaging objects with "modelList" attribute, i.e. those created
via model.avg from a model list, or from model.selection object with argument fit = TRUE
(which will recreate the model objects, see model.avg).

If all the component models are ordinary linear models, the prediction can be made either with
the full averaged coefficients (the argument full = TRUE this is the default) or subset-averaged
coefficients. Otherwise the prediction is obtained by calling predict on each component model
and weighted averaging the results, which corresponds to the assumption that all predictors are
present in all models, but those not estimated are equal zero (see ‘Note’ in model.avg). Predictions
from component models with standard errors are passed to par.avg and averaged in the same way
as the coefficients are.

Predictions on the response scale from generalized models can be calculated by averaging predic-
tions of each model on the link scale, followed by inverse transformation (this is achieved with
type = "link" and backtransform = TRUE). This is only possible if all component models use the
same family and link function. Alternatively, predictions from each model on response scale may
be averaged (with type = "response" and backtransform = FALSE). Note that this leads to results
differing from those calculated with the former method. See also predict.glm.

Value

If se.fit = FALSE, a vector of predictions, otherwise a list with components: fit containing the
predictions, and se.fit with the estimated standard errors.

Note

This method relies on availability of the predict methods for the component model classes (except
when all component models are of class lm).

The package MuMIn includes predict methods for lme, and gls that calculate standard errors
of the predictions (with se.fit = TRUE). They enhance the original predict methods from package
nlme, and with se.fit = FALSE they return identical result. MuMIn’s versions are always used
in averaged model predictions (so it is possible to predict with standard errors), but from within
global environment they will be found only if MuMIn is before nlme on the search list (or directly
extracted from namespace as MuMIn:::predict.lme).

Author(s)

Kamil Bartoń

52 predict.averaging

See Also

model.avg, and par.avg for details of model-averaged parameter calculation.

predict.lme, predict.gls

Examples

Example from Burnham and Anderson (2002), page 100:
fm1 <- lm(y ~ X1 + X2 + X3 + X4, data = Cement)

ms1 <- dredge(fm1)
confset.95p <- get.models(ms1, subset = cumsum(weight) <= .95)
avgm <- model.avg(confset.95p)

nseq <- function(x, len = length(x)) seq(min(x, na.rm = TRUE),
max(x, na.rm=TRUE), length = len)

New predictors: X1 along the range of original data, other
variables held constant at their means
newdata <- as.data.frame(lapply(lapply(Cement[, -1], mean), rep, 25))
newdata$X1 <- nseq(Cement$X1, nrow(newdata))

n <- length(confset.95p)

Predictions from each of the models in a set, and with averaged coefficients
pred <- data.frame(
model = sapply(confset.95p, predict, newdata = newdata),
averaged.subset = predict(avgm, newdata, full = FALSE),

averaged.full = predict(avgm, newdata, full = TRUE)
)

opal <- palette(c(topo.colors(n), "black", "red", "orange"))
matplot(newdata$X1, pred, type = "l",
lwd = c(rep(2,n),3,3), lty = 1,

xlab = "X1", ylab = "y", col=1:7)

For comparison, prediction obtained by averaging predictions of the component
models
pred.se <- predict(avgm, newdata, se.fit = TRUE)
y <- pred.se$fit
ci <- pred.se$se.fit * 2
matplot(newdata$X1, cbind(y, y - ci, y + ci), add = TRUE, type="l",
lty = 2, col = n + 3, lwd = 3)

legend("topleft",
legend=c(lapply(confset.95p, formula),

paste(c("subset", "full"), "averaged"), "averaged predictions + CI"),
lty = 1, lwd = c(rep(2,n),3,3,3), cex = .75, col=1:8)

palette(opal)

QAIC 53

QAIC Quasi AIC or AICc

Description

Calculate a modification of Akaike’s Information Criterion for overdispersed count data (or its
version corrected for small sample, “quasi-AICc”), for one or several fitted model objects.

Usage

QAIC(object, ..., chat, k = 2, REML = NULL)
QAICc(object, ..., chat, k = 2, REML = NULL)

Arguments

object a fitted model object.

... optionally, more fitted model objects.

chat ĉ, the variance inflation factor.

k the ‘penalty’ per parameter.

REML optional logical value, passed to the logLik method indicating whether the re-
stricted log-likelihood or log-likelihood should be used. The default is to use the
method used for model estimation.

Value

If only one object is provided, returns a numeric value with the corresponding QAIC or QAICc;
otherwise returns a data.frame with rows corresponding to the objects.

Note

ĉ is the dispersion parameter estimated from the global model, and can be calculated by dividing
model’s deviance by the number of residual degrees of freedom.

In calculation of QAIC, the number of model parameters is increased by 1 to account for estimating
the overdispersion parameter. Without overdispersion, ĉ = 1 and QAIC is equal to AIC.

Note that glm does not compute maximum-likelihood estimates in models within the quasi- family.
In case it is justified, it can be worked around by ‘borrowing’ the aic element from the correspond-
ing ‘non-quasi’ family (see ‘Example’).

Consider using negative binomial family with overdispersed count data.

Author(s)

Kamil Bartoń

54 QIC

See Also

AICc, quasi family used for models with over-dispersion.

Tests for overdispersion in GLM[M]: check_overdispersion.

Examples

options(na.action = "na.fail")

Based on "example(predict.glm)", with one number changed to create
overdispersion
budworm <- data.frame(

ldose = rep(0:5, 2), sex = factor(rep(c("M", "F"), c(6, 6))),
numdead = c(10, 4, 9, 12, 18, 20, 0, 2, 6, 10, 12, 16))

budworm$SF = cbind(numdead = budworm$numdead,
numalive = 20 - budworm$numdead)

budworm.lg <- glm(SF ~ sex*ldose, data = budworm, family = binomial)
(chat <- deviance(budworm.lg) / df.residual(budworm.lg))

dredge(budworm.lg, rank = "QAIC", chat = chat)
dredge(budworm.lg, rank = "AIC")

Not run:
A 'hacked' constructor for quasibinomial family object that allows for
ML estimation
hacked.quasibinomial <- function(...) {

res <- quasibinomial(...)
res$aic <- binomial(...)$aic
res

}
QAIC(update(budworm.lg, family = hacked.quasibinomial), chat = chat)

End(Not run)

QIC QIC and quasi-Likelihood for GEE

Description

Calculate quasi-likelihood under the independence model criterion (QIC) for Generalized Estimat-
ing Equations.

Usage

QIC(object, ..., typeR = FALSE)
QICu(object, ..., typeR = FALSE)
quasiLik(object, ...)

QIC 55

Arguments

object a fitted model object of class "gee", "geepack", "geem", "wgee", or "yags".

... for QIC and QICu, optionally more fitted model objects.

typeR logical, whether to calculate QIC(R). QIC(R) is based on quasi-likelihood of a
working correlation R model. Defaults to FALSE, and QIC(I) based on indepen-
dence model is returned.

Value

If just one object is provided, returns a numeric value with the corresponding QIC; if more than one
object are provided, returns a data.frame with rows corresponding to the objects and one column
representing QIC or QICu.

Note

This implementation is based partly on (revised) code from packages yags (R-Forge) and ape.

Author(s)

Kamil Bartoń

References

Pan, W. 2001 Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics 57,
120–125

Hardin J. W., Hilbe, J. M. 2003 Generalized Estimating Equations. Chapman & Hall/CRC

See Also

Methods exist for gee (package gee), geeglm (geepack), geem (geeM), wgee (wgeesel, the pack-
age’s QIC.gee function is used), and yags (yags on R-Forge). There is also a QIC function in
packages MESS and geepack, returning some extra information (such as CIC and QICc). yags and
compar.gee from package ape both provide QIC values.

Examples

data(ohio)

fm1 <- geeglm(resp ~ age * smoke, id = id, data = ohio,
family = binomial, corstr = "exchangeable", scale.fix = TRUE)

fm2 <- update(fm1, corstr = "ar1")
fm3 <- update(fm1, corstr = "unstructured")

QIC function is also defined in 'geepack' but is returns a vector[6], so
cannot be used as 'rank'. Either use `MuMIn::QIC` syntax or make a wrapper
around `geepack::QIC`

QIC <- MuMIn::QIC

56 r.squaredGLMM

Not run:
QIC <- function(x) geepack::QIC(x)[1]

End(Not run)

model.sel(fm1, fm2, fm3, rank = QIC)

#####
library(geepack)
library(MuMIn)

Not run:
same result:

dredge(fm1, m.lim = c(3, NA), rank = QIC, varying = list(
corstr = list("exchangeable", "unstructured", "ar1")
))

End(Not run)

r.squaredGLMM Pseudo-R-squared for Generalized Mixed-Effect models

Description

Calculate conditional and marginal coefficient of determination for Generalized mixed-effect mod-
els (R2

GLMM).

Usage

r.squaredGLMM(object, null, ...)
S3 method for class 'merMod'
r.squaredGLMM(object, null, envir = parent.frame(), pj2014 = FALSE, ...)

Arguments

object a fitted linear model object.

null optionally, a null model, including only random effects. See ‘Details’.

envir optionally, the environment in which the null model is to be evaluated. Defaults
to the current frame. See eval.

pj2014 logical, if TRUE and object is of poisson family, the result will include R2
GLMM

using original formulation of Johnson (2014). This requires fitting object with
an observation-level random effect term added.

... additional arguments, ignored.

r.squaredGLMM 57

Details

There are two types of R2
GLMM : marginal and conditional.

Marginal R2
GLMM represents the variance explained by the fixed effects, and is defined as:

R2
GLMM(m) =

σ2
f

σ2
f + σ2

α + σ2
ε

Conditional R2
GLMM represents the variance explained by the entire model, including both fixed

and random effects. It is calculated by the equation:

R2
GLMM(c) =

σ2
f + σ2

α

σ2
f + σ2

α + σ2
ε

where σ2
f is the variance of the fixed effect components, σα is the variance of the random effects,

and σ2
ϵ is the “observation-level” variance.

Three methods are available for deriving the observation-level variance σε: the delta method, log-
normal approximation and using the trigamma function.

The delta method can be used with for all distributions and link functions, while lognormal approxi-
mation and trigamma function are limited to distributions with logarithmic link. Trigamma-estimate
is recommended whenever available. Additionally, for binomial distributions, theoretical variances
exist specific for each link function distribution.

Null model. Calculation of the observation-level variance involves in some cases fitting a null model
containing no fixed effects other than intercept, otherwise identical to the original model (including
all the random effects). When using r.squaredGLMM for several models differing only in their fixed
effects, in order to avoid redundant calculations, the null model object can be passed as the argument
null. Otherwise, a null model will be fitted via updating the original model. This assumes that all
the variables used in the original model call have the same values as when the model was fitted. The
function warns about this when fitting the null model is required. This warnings can be disabled by
setting options(MuMIn.noUpdateWarning = TRUE).

Value

r.squaredGLMM returns a two-column numeric matrix, each (possibly named) row holding values
for marginal and conditional R2

GLMM calculated with different methods, such as “delta”, “log-
normal”, “trigamma”, or “theoretical” for models of binomial family.

Note

Important: as of MuMIn version 1.41.0, r.squaredGLMM returns a revised statistics based on
Nakagawa et al. (2017) paper. The returned value’s format also has changed (it is a matrix rather
than a numeric vector as before). Pre-1.41.0 version of the function calculated the “theoretical”
R2

GLMM for binomial models.

R2
GLMM can be calculated also for fixed-effect models. In the simpliest case of OLS it reduces to

var(fitted) / (var(fitted) + deviance / 2). Unlike likelihood-ratio based R2 for OLS, value
of this statistic differs from that of the classical R2.

58 r.squaredGLMM

Currently methods exist for classes: merMod, lme, glmmTMB, glmmADMB, glmmPQL, cpglm(m) and
(g)lm.

For families other than gaussian, Gamma, poisson, binomial and negative binomial, the residual
variance is obtained using get_variance from package insight.

See note in r.squaredLR help page for comment on using R2 in model selection.

Author(s)

Kamil Bartoń. This implementation is based on R code from ‘Supporting Information’ for Naka-
gawa et al. (2014), (the extension for random-slopes) Johnson (2014), and includes developments
from Nakagawa et al. (2017).

References

Nakagawa, S., Schielzeth, H. 2013 A general and simple method for obtaining R2 from Generalized
Linear Mixed-effects Models. Methods in Ecology and Evolution 4, 133–142.

Johnson, P. C. D. 2014 Extension of Nakagawa & Schielzeth’s R2
GLMM to random slopes models.

Methods in Ecology and Evolution 5, 44–946.

Nakagawa, S., Johnson, P. C. D., Schielzeth, H. 2017 The coefficient of determination R2 and intra-
class correlation coefficient from generalized linear mixed-effects models revisited and expanded.
J. R. Soc. Interface 14, 20170213.

See Also

summary.lm, r.squaredLR

r2 from package performance calculates R2
GLMM also for variance at different levels, with op-

tional confidence intervals. r2glmm has functions for R2 and partial R2.

Examples

data(Orthodont, package = "nlme")

fm1 <- lme(distance ~ Sex * age, ~ 1 | Subject, data = Orthodont)

fmnull <- lme(distance ~ 1, ~ 1 | Subject, data = Orthodont)

r.squaredGLMM(fm1)
r.squaredGLMM(fm1, fmnull)
r.squaredGLMM(update(fm1, . ~ Sex), fmnull)

r.squaredLR(fm1)
r.squaredLR(fm1, null.RE = TRUE)
r.squaredLR(fm1, fmnull) # same result

Not run:
if(require(MASS)) {

fm <- glmmPQL(y ~ trt + I(week > 2), random = ~ 1 | ID,
family = binomial, data = bacteria, verbose = FALSE)

r.squaredLR 59

fmnull <- update(fm, . ~ 1)
r.squaredGLMM(fm)

Include R2GLMM (delta method estimates) in a model selection table:
Note the use of a common null model
dredge(fm, extra = list(R2 = function(x) r.squaredGLMM(x, fmnull)["delta",]))

}

End(Not run)

r.squaredLR Likelihood-ratio based pseudo-R-squared

Description

Calculate a coefficient of determination based on the likelihood-ratio test (R2
LR).

Usage

r.squaredLR(object, null = NULL, null.RE = FALSE, ...)

null.fit(object, evaluate = FALSE, RE.keep = FALSE, envir = NULL, ...)

Arguments

object a fitted model object.

null a fitted null model. If not provided, null.fit will be used to construct it.
null.fit’s capabilities are limited to only a few model classes, for others the
null model has to be specified manually.

null.RE logical, should the null model contain random factors? Only used if no null
model is given, otherwise omitted, with a warning.

evaluate if TRUE evaluate the fitted model object else return the call.

RE.keep if TRUE, the random effects of the original model are included.

envir the environment in which the null model is to be evaluated, defaults to the envi-
ronment of the original model’s formula.

... further arguments, of which only x would be used, to maintain compatibility
with older versions (x has been replaced with object).

Details

This statistic is is one of the several proposed pseudo-R2’s for nonlinear regression models. It is
based on an improvement from null (intercept only) model to the fitted model, and calculated as

R2
LR = 1− exp(− 2

n
(logL(x)− logL(0)))

60 stackingWeights

where logL(x) and logL(0) are the log-likelihoods of the fitted and the null model respectively. ML
estimates are used if models have been fitted by REstricted ML (by calling logLik with argument
REML = FALSE). Note that the null model can include the random factors of the original model, in
which case the statistic represents the ‘variance explained’ by fixed effects.

For OLS models the value is consistent with classical R2. In some cases (e.g. in logistic regres-
sion), the maximum R2

LR is less than one. The modification proposed by Nagelkerke (1991)
adjusts the R2

LR to achieve 1 at its maximum: R̄2 = R2
LR/max(R2

LR) where max(R2
LR) =

1− exp(2n logL(0)).
null.fit tries to guess the null model call, given the provided fitted model object. This would be
usually a glm. The function will give an error for an unrecognised class.

Value

r.squaredLR returns a value of R2
LR, and the attribute "adj.r.squared" gives the Nagelkerke’s

modified statistic. Note that this is not the same as nor equivalent to the classical ‘adjusted R
squared’.

null.fit returns the fitted null model object (if evaluate = TRUE) or an unevaluated call to fit a
null model.

Note

R2 is a useful goodness-of-fit measure as it has the interpretation of the proportion of the variance
‘explained’, but it performs poorly in model selection, and is not suitable for use in the same way
as the information criteria.

References

Cox, D. R. and Snell, E. J. 1989 The analysis of binary data, 2nd ed. London, Chapman and Hall.

Magee, L. 1990 R2 measures based on Wald and likelihood ratio joint significance tests. Amer.
Stat. 44, 250–253.

Nagelkerke, N. J. D. 1991 A note on a general definition of the coefficient of determination.
Biometrika 78, 691–692.

See Also

summary.lm, r.squaredGLMM

r2 from package performance calculates many different types of R2.

stackingWeights Stacking model weights

Description

Compute model weights based on a cross-validation-like procedure.

stackingWeights 61

Usage

stackingWeights(object, ..., data, R, p = 0.5)

Arguments

object, ... two or more fitted glm objects, or a list of such, or an "averaging" object.

data a data frame containing the variables in the model, used for fitting and predic-
tion.

R the number of replicates.

p the proportion of the data to be used as training set. Defaults to 0.5.

Details

Each model in a set is fitted to the training data: a subset of p * N observations in data. From these
models a prediction is produced on the remaining part of data (the test or hold-out data). These
hold-out predictions are fitted to the hold-out observations, by optimising the weights by which the
models are combined. This process is repeated R times, yielding a distribution of weights for each
model (which Smyth & Wolpert (1998) referred to as an ‘empirical Bayesian estimate of posterior
model probability’). A mean or median of model weights for each model is taken and re-scaled to
sum to one.

Value

A matrix with two rows, containing model weights calculated using mean and median.

Note

This approach requires a sample size of at least 2× the number of models.

Author(s)

Carsten Dormann, Kamil Bartoń

References

Wolpert, D. H. 1992 Stacked generalization. Neural Networks 5, 241–259.

Smyth, P. and Wolpert, D. 1998 An Evaluation of Linearly Combining Density Estimators via Stack-
ing. Technical Report No. 98–25. Information and Computer Science Department, University of
California, Irvine, CA.

Dormann, C. et al. 2018 Model averaging in ecology: a review of Bayesian, information-theoretic,
and tactical approaches for predictive inference. Ecological Monographs 88, 485–504.

See Also

Weights, model.avg

Other model weights: BGWeights(), bootWeights(), cos2Weights(), jackknifeWeights()

62 std.coef

Examples

#simulated Cement dataset to increase sample size for the training data
fm0 <- glm(y ~ X1 + X2 + X3 + X4, data = Cement, na.action = na.fail)
dat <- as.data.frame(apply(Cement[, -1], 2, sample, 50, replace = TRUE))
dat$y <- rnorm(nrow(dat), predict(fm0), sigma(fm0))

global model fitted to training data:
fm <- glm(y ~ X1 + X2 + X3 + X4, data = dat, na.action = na.fail)

generate a list of *some* subsets of the global model
models <- lapply(dredge(fm, evaluate = FALSE, fixed = "X1", m.lim = c(1, 3)), eval)

wts <- stackingWeights(models, data = dat, R = 10)

ma <- model.avg(models)
Weights(ma) <- wts["mean",]

predict(ma)

std.coef Standardized model coefficients

Description

Standardize model coefficients by Standard Deviation or Partial Standard Deviation.

Usage

std.coef(x, partial.sd, ...)

partial.sd(x)

Deprecated:
beta.weights(model)

Arguments

x, model a fitted model object.

partial.sd logical, if set to TRUE, model coefficients are multiplied by partial SD, otherwise
they are multiplied by the ratio of the standard deviations of the independent
variable and dependent variable.

... additional arguments passed to coefTable, e.g. dispersion.

std.coef 63

Details

Standardizing model coefficients has the same effect as centring and scaling the input variables.
“Classical” standardized coefficients are calculated as β∗

i = βi
sXi

sy
, where β is the unstandardized

coefficient, sXi
is the standard deviation of associated dependent variable Xi and sy is SD of the

response variable.

If variables are intercorrelated, the standard deviation of Xi used in computing the standardized
coefficients β∗

i should be replaced by the partial standard deviation of Xi which is adjusted for
the multiple correlation of Xi with the other X variables included in the regression equation. The
partial standard deviation is calculated as s∗Xi

= sXi
V IF (Xi)

−0.5(n−1
n−p)

0.5, where VIF is the
variance inflation factor, n is the number of observations and p , the number of predictors in the
model. The coefficient is then transformed as β∗

i = βis
∗
Xi

.

Value

A matrix with at least two columns for the standardized coefficient estimate and its standard error.
Optionally, the third column holds degrees of freedom associated with the coefficients.

Author(s)

Kamil Bartoń. Variance inflation factors calculation is based on function vif from package car
written by Henric Nilsson and John Fox.

References

Cade, B.S. 2015 Model averaging and muddled multimodel inferences. Ecology 96, 2370-2382.

Afifi, A., May, S., Clark, V.A. 2011 Practical Multivariate Analysis, Fifth Edition. CRC Press.

Bring, J. 1994 How to standardize regression coefficients. The American Statistician 48, 209–213.

See Also

partial.sd can be used with stdize.

coef or coeffs and coefTable for unstandardized coefficients.

Examples

Fit model to original data:
fm <- lm(y ~ x1 + x2 + x3 + x4, data = GPA)

Partial SD for the default formula: y ~ x1 + x2 + x3 + x4
psd <- partial.sd(lm(data = GPA))[-1] # remove first element for intercept

Standardize data:
zGPA <- stdize(GPA, scale = c(NA, psd), center = TRUE)
Note: first element of 'scale' is set to NA to ignore the first column 'y'

Coefficients of a model fitted to standardized data:
zapsmall(coefTable(stdizeFit(fm, newdata = zGPA)))
Standardized coefficients of a model fitted to original data:
zapsmall(std.coef(fm, partial = TRUE))

64 stdize

Standardizing nonlinear models:
fam <- Gamma("inverse")
fmg <- glm(log(y) ~ x1 + x2 + x3 + x4, data = GPA, family = fam)

psdg <- partial.sd(fmg)
zGPA <- stdize(GPA, scale = c(NA, psdg[-1]), center = FALSE)
fmgz <- glm(log(y) ~ z.x1 + z.x2 + z.x3 + z.x4, zGPA, family = fam)

Coefficients using standardized data:
coef(fmgz) # (intercept is unchanged because the variables haven't been

centred)
Standardized coefficients:
coef(fmg) * psdg

stdize Standardize data

Description

stdize standardizes variables by centring and scaling.

stdizeFit modifies a model call or existing model to use standardized variables.

Usage

Default S3 method:
stdize(x, center = TRUE, scale = TRUE, ...)

S3 method for class 'logical'
stdize(x, binary = c("center", "scale", "binary", "half", "omit"),
center = TRUE, scale = FALSE, ...)

also for two-level factors

S3 method for class 'data.frame'
stdize(x, binary = c("center", "scale", "binary", "half", "omit"),
center = TRUE, scale = TRUE, omit.cols = NULL, source = NULL,
prefix = TRUE, append = FALSE, ...)

S3 method for class 'formula'
stdize(x, data = NULL, response = FALSE,
binary = c("center", "scale", "binary", "half", "omit"),
center = TRUE, scale = TRUE, omit.cols = NULL, prefix = TRUE,
append = FALSE, ...)

stdizeFit(object, newdata, which = c("formula", "subset", "offset", "weights",
"fixed", "random", "model"), evaluate = TRUE, quote = NA)

stdize 65

Arguments

x a numeric or logical vector, factor, numeric matrix, data.frame or a formula.

center, scale either a logical value or a logical or numeric vector of length equal to the number
of columns of x (see ‘Details’). scale can be also a function to use for scaling.

binary specifies how binary variables (logical or two-level factors) are scaled. Default
is to "center" by subtracting the mean assuming levels are equal to 0 and 1;
use "scale" to both centre and scale by SD, "binary" to centre to 0 / 1, "half"
to centre to -0.5 / 0.5, and "omit" to leave binary variables unmodified. This
argument has precedence over center and scale, unless it is set to NA (in which
case binary variables are treated like numeric variables).

source a reference data.frame, being a result of previous stdize, from which scale
and center values are taken. Column names are matched. This can be used for
scaling new data using statistics of another data.

omit.cols column names or numeric indices of columns that should be left unaltered.

prefix either a logical value specifying whether the names of transformed columns
should be prefixed, or a two-element character vector giving the prefixes. The
prefixes default to “z.” for scaled and “c.” for centred variables.

append logical, if TRUE, modified columns are appended to the original data frame.

response logical, stating whether the response should be standardized. By default, only
variables on the right-hand side of the formula are standardized.

data an object coercible to data.frame, containing the variables in formula. Passed
to, and used by model.frame.

newdata a data.frame returned by stdize, to be used by the modified model.

... for the formula method, additional arguments passed to model.frame. For
other methods, it is silently ignored.

object a fitted model object or an expression being a call to the modelling function.

which a character string naming arguments which should be modified. This should be
all arguments which are evaluated in the data environment. Can be also TRUE to
modify the expression as a whole. The data argument is additionally replaced
with that passed to stdizeFit.

evaluate if TRUE, the modified call is evaluated and the fitted model object is returned.

quote if TRUE, avoids evaluating object. Equivalent to stdizeFit(quote(expr),
...). Defaults to NA in which case object being a call to non-primitive function
is quoted.

Details

stdize resembles scale, but uses special rules for factors, similarly to standardize in package
arm.

stdize differs from standardize in that it is used on data rather than on the fitted model object.
The scaled data should afterwards be passed to the modelling function, instead of the original data.

Unlike standardize, it applies special ‘binary’ scaling only to two-level factors and logical vari-
ables, rather than to any variable with two unique values.

66 stdize

Variables of only one unique value are unchanged.

By default, stdize scales by dividing by standard deviation rather than twice the SD as standardize
does. Scaling by SD is used also on uncentred values, which is different from scale where root-
mean-square is used.

If center or scale are logical scalars or vectors of length equal to the number of columns of x,
the centring is done by subtracting the mean (if center corresponding to the column is TRUE), and
scaling is done by dividing the (centred) value by standard deviation (if corresponding scale is
TRUE). If center or scale are numeric vectors with length equal to the number of columns of x
(or numeric scalars for vector methods), then these are used instead. Any NAs in the numeric vector
result in no centring or scaling on the corresponding column.

Note that scale = 0 is equivalent to no scaling (i.e. scale = 1).

Binary variables, logical or factors with two levels, are converted to numeric variables and trans-
formed according to the argument binary, unless center or scale are explicitly given.

Value

stdize returns a vector or object of the same dimensions as x, where the values are centred and/or
scaled. Transformation is carried out column-wise in data.frames and matrices.

The returned value is compatible with that of scale in that the numeric centring and scalings used
are stored in attributes "scaled:center" and "scaled:scale" (these can be NA if no centring or
scaling has been done).

stdizeFit returns a modified, fitted model object that uses transformed variables from newdata,
or, if evaluate is FALSE, an unevaluated call where the variable names are replaced to point the
transformed variables.

Author(s)

Kamil Bartoń

References

Gelman, A. 2008 Scaling regression inputs by dividing by two standard deviations. Statistics in
medicine 27, 2865–2873.

See Also

Compare with scale and standardize or rescale (the latter two in package arm).

For typical standardizing, model coefficients transformation may be easier, see std.coef.

apply and sweep for arbitrary transformations of columns in a data.frame.

Examples

compare "stdize" and "scale"
nmat <- matrix(runif(15, 0, 10), ncol = 3)

stdize(nmat)
scale(nmat)

stdize 67

rootmeansq <- function(v) {
v <- v[!is.na(v)]
sqrt(sum(v^2) / max(1, length(v) - 1L))

}

scale(nmat, center = FALSE)
stdize(nmat, center = FALSE, scale = rootmeansq)

if(require(lme4)) {
define scale function as twice the SD to reproduce "arm::standardize"
twosd <- function(v) 2 * sd(v, na.rm = TRUE)

standardize data (scaled variables are prefixed with "z.")
z.CO2 <- stdize(uptake ~ conc + Plant, data = CO2, omit = "Plant", scale = twosd)
summary(z.CO2)

fmz <- stdizeFit(lmer(uptake ~ conc + I(conc^2) + (1 | Plant)), newdata = z.CO2)
produces:
lmer(uptake ~ z.conc + I(z.conc^2) + (1 | Plant), data = z.CO2)

standardize using scale and center from "z.CO2", keeping the original data:
z.CO2a <- stdize(CO2, source = z.CO2, append = TRUE)
Here, the "subset" expression uses untransformed variable, so we modify only
"formula" argument, keeping "subset" as-is. For that reason we needed the
untransformed variables in "newdata".
stdizeFit(lmer(uptake ~ conc + I(conc^2) + (1 | Plant),

subset = conc > 100,
), newdata = z.CO2a, which = "formula", evaluate = FALSE)

create new data as a sequence along "conc"
newdata <- data.frame(conc = seq(min(CO2$conc), max(CO2$conc), length = 10))

scale new data using scale and center of the original scaled data:
z.newdata <- stdize(newdata, source = z.CO2)

plot predictions against "conc" on real scale:
plot(newdata$conc, predict(fmz, z.newdata, re.form = NA))

compare with "arm::standardize"
Not run:
library(arm)
fms <- standardize(lmer(uptake ~ conc + I(conc^2) + (1 | Plant), data = CO2))
plot(newdata$conc, predict(fms, z.newdata, re.form = NA))

End(Not run)
}

68 subset.model.selection

subset.model.selection

Subsetting model selection table

Description

Extract a subset of a model selection table.

Usage

S3 method for class 'model.selection'
subset(x, subset, select, recalc.weights = TRUE, recalc.delta = FALSE, ...)
S3 method for class 'model.selection'
x[i, j, recalc.weights = TRUE, recalc.delta = FALSE, ...]
S3 method for class 'model.selection'
x[[..., exact = TRUE]]

Arguments

x a model.selection object to be subsetted.

subset, select logical expressions indicating columns and rows to keep. See subset.

i, j indices specifying elements to extract.

recalc.weights logical value specyfying whether Akaike weights should be normalized across
the new set of models to sum to one.

recalc.delta logical value specyfying whether ∆IC should be calculated for the new set of
models (not done by default).

exact logical, see [.

... further arguments passed to [.data.frame (drop).

Details

Unlike the method for data.frame, single bracket extraction with only one index x[i] selects rows
(models) rather than columns.

To select rows according to presence or absence of the variables (rather than their value), a pseudo-
function has may be used with subset, e.g. subset(x, has(a, !b)) will select rows with a and
without b (this is equivalent to !is.na(a) & is.na(b)). has can take any number of arguments.

Complex model terms need to be enclosed within curly brackets (e.g {s(a,k=2)}), except for
within has. Backticks-quoting is also possible, but then the name must match exactly (including
whitespace) the term name as returned by getAllTerms.

Enclosing in I prevents the name from being interpreted as a column name.

To select rows where one variable can be present conditional on the presence of other variables, the
function dc (dependency chain) can be used. dc takes any number of variables as arguments, and
allows a variable to be included only if all the preceding arguments are also included (e.g. subset
= dc(a, b, c) allows for models of form a, a+b and a+b+c but not b, c, b+c or a+c).

sw 69

Value

A model.selection object containing only the selected models (rows). If columns are selected (via
argument select or the second index x[, j]) and not all essential columns (i.e. all except "varying"
and "extra") are present in the result, a plain data.frame is returned. Similarly, modifying values
in the essential columns with [<-, [[<- or $<- produces a regular data frame.

Author(s)

Kamil Bartoń

See Also

dredge, subset and [.data.frame for subsetting and extracting from data.frames.

Examples

fm1 <- lm(formula = y ~ X1 + X2 + X3 + X4, data = Cement, na.action = na.fail)

generate models where each variable is included only if the previous
are included too, e.g. X2 only if X1 is there, and X3 only if X2 and X1
dredge(fm1, subset = dc(X1, X2, X3, X4))

which is equivalent to
dredge(fm1, subset = (!X2 | X1) & (!X3 | X2) & (!X4 | X3))

alternatively, generate "all possible" combinations
ms0 <- dredge(fm1)
...and afterwards select the subset of models
subset(ms0, dc(X1, X2, X3, X4))
which is equivalent to
subset(ms0, (has(!X2) | has(X1)) & (has(!X3) | has(X2)) & (has(!X4) | has(X3)))

Different ways of finding a confidence set of models:
delta(AIC) cutoff
subset(ms0, delta <= 4, recalc.weights = FALSE)
cumulative sum of Akaike weights
subset(ms0, cumsum(weight) <= .95, recalc.weights = FALSE)
relative likelihood
subset(ms0, (weight / weight[1]) > (1/8), recalc.weights = FALSE)

sw Per-variable sum of model weights

Description

Sum of model weights over all models including each explanatory variable.

70 sw

Usage

sw(x)
importance(x)

Arguments

x either a list of fitted model objects, or a "model.selection" or "averaging"
object.

Value

a named numeric vector of so called relative importance values, for each predictor variable.

Author(s)

Kamil Bartoń

See Also

Weights

dredge, model.avg, model.sel

Examples

Generate some models
fm1 <- lm(y ~ ., data = Cement, na.action = na.fail)
ms1 <- dredge(fm1)

Sum of weights can be calculated/extracted from various objects:
sw(ms1)
Not run:
sw(subset(model.sel(ms1), delta <= 4))
sw(model.avg(ms1, subset = delta <= 4))
sw(subset(ms1, delta <= 4))
sw(get.models(ms1, delta <= 4))

End(Not run)

Re-evaluate SW according to BIC
note that re-ranking involves fitting the models again

'nobs' is not used here for backwards compatibility
lognobs <- log(length(resid(fm1)))

sw(subset(model.sel(ms1, rank = AIC, rank.args = list(k = lognobs)),
cumsum(weight) <= .95))

This gives a different result than previous command, because 'subset' is
applied to the original selection table that is ranked with 'AICc'
sw(model.avg(ms1, rank = AIC, rank.args = list(k = lognobs),

subset = cumsum(weight) <= .95))

updateable 71

updateable Make a function return updateable result

Description

Creates a function wrapper that stores a call in the object returned by its argument FUN.

Usage

updateable(FUN, eval.args = NULL, Class)

get_call(x)

updateable wrapper for mgcv::gamm and gamm4::gamm4
uGamm(formula, random = NULL, ..., lme4 = inherits(random, "formula"))

Arguments

FUN function to be modified, found via match.fun.

eval.args optionally a character vector of function arguments’ names to be evaluated in
the stored call. See ‘Details’.

Class optional character vector naming class(es) to be set onto the result of FUN (not
possible with formal S4 objects).

x an object from which the call should be extracted.
formula, random, ...

arguments to be passed to gamm or gamm4

lme4 if TRUE, gamm4 is called, gamm otherwise.

Details

Most model fitting functions in R return an object that can be updated or re-fitted via update. This
is thanks to the call stored in the object, which can be used (possibly modified) later on. It is also
utilised by dredge to generate sub-models. Some functions (such as gamm or MCMCglmm) do not
provide their result with the call element. To work that around, updateable can be used on that
function to store the call. The resulting “wrapper” should be used in exactly the same way as the
original function.

updateable can also be used to repair an existing call element, e.g. if it contains dotted names
that prevent re-evaluation of such a call.

Argument eval.args specifies names of function arguments that should be evaluated in the stored
call. This is useful when, for example, the model object does not have formula element. The
default formula method tries to retrieve formula from the stored call, which works unless the
formula has been given as a variable and value of that variable changed since the model was fitted
(the last ‘example’ demonstrates this).

72 updateable

Value

updateable returns a function with the same arguments as FUN, wrapping a call to FUN and adding
an element named call to its result if possible, otherwise an attribute "call" (if the returned value
is atomic or a formal S4 object).

Note

get_call is similar to getCall (defined in package stats), but it can also extract the call when it
is an attribute (and not an element of the object). Because the default getCall method cannot do
that, the default update method will not work with atomic or S4 objects resulting from updateable
wrappers.

uGamm sets also an appropriate class onto the result ("gamm4" and/or "gamm"), which is needed for
some generics defined in MuMIn to work (note that unlike the functions created by updateable it
has no formal arguments of the original function). As of version 1.9.2, MuMIn::gamm is no longer
available.

Author(s)

Kamil Bartoń

See Also

update, getCall, getElement, attributes

gamm, gamm4

Examples

Simple example with cor.test:

From example(cor.test)
x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
y <- c(2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)

ct1 <- cor.test(x, y, method = "kendall", alternative = "greater")

uCor.test <- updateable(cor.test)

ct2 <- uCor.test(x, y, method = "kendall", alternative = "greater")

getCall(ct1) # --> NULL
getCall(ct2)

#update(ct1, method = "pearson") --> Error
update(ct2, method = "pearson")
update(ct2, alternative = "two.sided")

predefined wrapper for 'gamm':

set.seed(0)

Weights 73

dat <- gamSim(6, n = 100, scale = 5, dist = "normal")

fmm1 <- uGamm(y ~s(x0)+ s(x3) + s(x2), family = gaussian, data = dat,
random = list(fac = ~1))

getCall(fmm1)
class(fmm1)

###

Not run:
library(caper)
data(shorebird)
shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)

fm1 <- crunch(Egg.Mass ~ F.Mass * M.Mass, data = shorebird)

uCrunch <- updateable(crunch)

fm2 <- uCrunch(Egg.Mass ~ F.Mass * M.Mass, data = shorebird)

getCall(fm1)
getCall(fm2)
update(fm2) # Error with 'fm1'
dredge(fm2)

End(Not run)

###
Not run:
"lmekin" does not store "formula" element
library(coxme)
uLmekin <- updateable(lmekin, eval.args = "formula")

f <- effort ~ Type + (1|Subject)
fm1 <- lmekin(f, data = ergoStool)
fm2 <- uLmekin(f, data = ergoStool)

f <- wrong ~ formula # reassigning "f"

getCall(fm1) # formula is "f"
getCall(fm2)

formula(fm1) # returns the current value of "f"
formula(fm2)

End(Not run)

Weights Akaike weights

74 Weights

Description

Calculate, extract or set normalized model likelihoods (‘Akaike weights’).

Usage

Weights(x)
Weights(x) <- value

Arguments

x a numeric vector of information criterion values such as AIC, or objects returned
by functions like AIC. There are also methods for extracting ‘Akaike weights’
from "model.selection" or "averaging" objects.

value numeric, the new weights for the "averaging" object or NULL to reset the
weights based on the original IC used.

Details

The replacement function can assign new weights to an "averaging" object, affecting coefficient
values and order of component models.

Value

For the extractor, a numeric vector of normalized likelihoods.

Note

On assigning new weights, the model order changes accordingly, so assigning the same weights
again will cause incorrect re-calculation of averaged coefficients. To avoid that, either re-set model
weights by assigning NULL, or use ordered weights.

Author(s)

Kamil Bartoń

See Also

sw, weighted.mean

armWeights, bootWeights, BGWeights, cos2Weights, jackknifeWeights and stackingWeights
can be used to produce model weights.

weights, which extracts fitting weights from model objects.

Examples

fm1 <- glm(Prop ~ dose, data = Beetle, family = binomial)
fm2 <- update(fm1, . ~ . + I(dose^2))
fm3 <- update(fm1, . ~ log(dose))
fm4 <- update(fm3, . ~ . + I(log(dose)^2))

Weights 75

round(Weights(AICc(fm1, fm2, fm3, fm4)), 3)

am <- model.avg(fm1, fm2, fm3, fm4, rank = AICc)

coef(am)

Assign equal weights to all models:
Weights(am) <- rep(1, 4) # assigned weights are rescaled to sum to 1
Weights(am)
coef(am)

Assign dummy weights:
wts <- c(2,1,4,3)
Weights(am) <- wts
coef(am)
Component models are now sorted according to the new weights.
The same weights assigned again produce incorrect results!
Weights(am) <- wts
coef(am) # wrong!
#
Weights(am) <- NULL # reset to original model weights
Weights(am) <- wts
coef(am) # correct

Index

∗ datasets
Beetle, 7
Cement, 12
GPA, 27

∗ hplot
coefplot, 13
plot.model.selection, 48

∗ manip
exprApply, 22
Formula manipulation, 24
merge.model.selection, 32
Model utilities, 33
stdize, 64
subset.model.selection, 68

∗ model weights
BGWeights, 9
bootWeights, 11
cos2Weights, 15
jackknifeWeights, 29
stackingWeights, 60

∗ models
AICc, 4
arm.glm, 6
BGWeights, 9
bootWeights, 11
cos2Weights, 15
dredge, 17
get.models, 25
Information criteria, 28
jackknifeWeights, 29
loo, 31
Model utilities, 33
model.avg, 35
model.sel, 38
model.selection.object, 40
MuMIn-package, 3
nested, 43
par.avg, 44
pdredge, 46

predict.averaging, 50
QAIC, 53
QIC, 54
r.squaredGLMM, 56
r.squaredLR, 59
stackingWeights, 60
std.coef, 62
sw, 69
Weights, 73

∗ package
MuMIn-models, 41
MuMIn-package, 3

∗ utils
updateable, 71

[, 68
[.data.frame, 68, 69
[.model.selection

(subset.model.selection), 68
[[.model.selection

(subset.model.selection), 68

AIC, 3, 5, 29
AICc, 3, 4, 11, 29, 37, 40, 54
alist, 18
aodml, 42
aodql, 42
append.model.selection

(merge.model.selection), 32
apply, 66
ARM, 3
arm.glm, 6
armWeights, 74
armWeights (arm.glm), 6
as.call, 23
as.name, 23
attribute, 72
attributes, 72
axis, 49

backticks, 20

76

INDEX 77

Bates-Granger, 3
Beetle, 7, 18
beta.weights (std.coef), 62
betabin, 42
betareg, 42
BGWeights, 7, 9, 12, 16, 30, 61, 74
BIC, 3, 29
bootstrapped, 3
bootWeights, 7, 11, 11, 16, 30, 61, 74
bquote, 23
brglm, 42

CAICF, 3
CAICF (Information criteria), 28
call, 23
Cement, 12
check_overdispersion, 54
clm, 42
clmm, 42
coef, 35, 63
coeffs, 63
coeffs (Model utilities), 33
coefplot, 13
coefTable, 18, 20, 36, 62, 63
coefTable (Model utilities), 33
colorRamp, 49
compar.gee, 55
confint, 37
cos-squared, 3
cos2Weights, 7, 11, 12, 15, 30, 61, 74
coxme, 42
coxph, 42
Cp (Information criteria), 28
cpglm, 42
cpglmm, 42
crunch, 42
curly, 22

dc (dredge), 17
delete.response, 25
DIC, 3
DIC (Information criteria), 28
dotted names, 71
dredge, 3, 17, 26, 33, 35, 37, 39–41, 43, 44,

46, 69, 70
drop.terms, 25

eval, 56

expand.formula (Formula manipulation),
24

exprApply, 22
expression, 23

family, 29
formula, 25, 36
Formula manipulation, 24

gam, 42
gamlss, 42
gamm, 42, 72
gamm-wrapper (updateable), 71
gamm4, 42, 72
gee, 42, 55
geeglm, 42, 55
geem, 42, 55
get.models, 18, 21, 25, 37
get.response (Model utilities), 33
get_call (updateable), 71
get_variance, 58
getAllTerms (Model utilities), 33
getCall, 72
getElement, 72
glm, 6, 10, 11, 16, 29, 42, 61
glm.fit, 10
glm.nb, 42
glmer, 42
glmmML, 42
glmmTMB, 42
global option, 20
gls, 42
GPA, 27
graphical parameters, 14, 49

has (subset.model.selection), 68
HCL palette, 49
hurdle, 42

IC (Information criteria), 28
ICOMP, 3
ICOMP (Information criteria), 28
importance (sw), 69
Information criteria, 28

jackknife, 3
jackknifeWeights, 7, 11, 12, 16, 29, 61, 74

list, 26
list of supported models, 36, 40

78 INDEX

lm, 42
lme, 42, 51
lmekin, 42
lmer, 42
Logical Operators, 20
logistf, 42
logLik, 36
loo, 31

makeCluster, 26
Mallows’ Cp, 3
Mallows’ Cp (Information criteria), 28
mark, 42
MASS::ginv(), 10
match.call, 23
match.fun, 23, 36, 71
maxlike, 42
MCMCglmm, 42
merge, 33
merge.model.selection, 32
mod.sel (model.sel), 38
Model utilities, 33
model.avg, 3, 6, 7, 11, 12, 14, 16, 21, 26, 30,

35, 43, 45, 51, 52, 61, 70
model.frame, 34, 65
model.names (Model utilities), 33
model.sel, 3, 21, 26, 33, 38, 40, 41, 43, 44, 70
model.sel<- (model.sel), 38
model.selection.object, 20, 39, 40
mtext, 49
multinom, 42
MuMIn (MuMIn-package), 3
MuMIn-gamm (updateable), 71
MuMIn-model-utils (Model utilities), 33
MuMIn-models, 41
MuMIn-package, 3

negbin, 42
nested, 43
null.fit (r.squaredLR), 59

optim, 29, 30
optimisation method, 30

par, 14, 49, 50
par.avg, 7, 34, 36, 37, 44, 52
parse, 49
partial.sd, 3
partial.sd (std.coef), 62

pdredge, 18, 26, 46
pget.models (get.models), 25
pgls, 42
plot, 20
plot.averaging (coefplot), 13
plot.default, 50
plot.model.selection, 48
plotmath, 14, 49
polr, 42
predict, 3, 36
predict.averaging, 50
predict.glm, 51
predict.gls, 52
predict.lme, 52
prediction, 6, 16
print.averaging (model.avg), 35
print.model.selection (dredge), 17
prior weights, 29

QAIC, 3, 53
QAICc, 3
QAICc (QAIC), 53
QIC, 3, 29, 42, 54
QICu (QIC), 54
quasi, 54
quasiLik (QIC), 54
quote, 18, 23

r.squaredGLMM, 56, 60
r.squaredLR, 18, 58, 59
r2, 58, 60
rbind, 33
rbind.model.selection

(merge.model.selection), 32
reformulate, 25
rlm, 42
rq, 42

scale, 65, 66
search list, 51
simplify.formula (Formula

manipulation), 24
solve, 10
source reference, 23
spautolm, 42
spml, 42
square, 22
stacking, 3
stackingWeights, 7, 11, 12, 16, 30, 60, 74

INDEX 79

std.coef, 3, 17, 62, 66
stdize, 3, 63, 64
stdizeFit, 3
stdizeFit (stdize), 64
step, 3
stepAIC, 3
subset, 20, 36, 68, 69
subset.model.selection, 68
substitute, 23
sum.of.weights (sw), 69
summary.glm, 36
summary.lm, 58, 60
summary.lme, 34
survreg, 42
sw, 69, 74
sweep, 66

the list of supported models, 3, 18
tTable (Model utilities), 33

uGamm (updateable), 71
update, 71, 72
updateable, 18, 43, 71
updateable2 (updateable), 71

V (dredge), 17
vcov, 34, 36

weighted.mean, 74
Weights, 7, 11, 12, 16, 30, 61, 70, 73
weights, 74
Weights<- (Weights), 73

zeroinfl, 42

	MuMIn-package
	AICc
	arm.glm
	Beetle
	BGWeights
	bootWeights
	Cement
	coefplot
	cos2Weights
	dredge
	exprApply
	Formula manipulation
	get.models
	GPA
	Information criteria
	jackknifeWeights
	loo
	merge.model.selection
	Model utilities
	model.avg
	model.sel
	model.selection.object
	MuMIn-models
	nested
	par.avg
	pdredge
	plot.model.selection
	predict.averaging
	QAIC
	QIC
	r.squaredGLMM
	r.squaredLR
	stackingWeights
	std.coef
	stdize
	subset.model.selection
	sw
	updateable
	Weights
	Index

